礦井通風(fēng)機(jī)檢測(cè)虛擬儀器及誤差補(bǔ)償方法研究
本文選題:通風(fēng)機(jī) + 虛擬儀器; 參考:《西安科技大學(xué)》2017年碩士論文
【摘要】:通風(fēng)機(jī)作為礦井生產(chǎn)的關(guān)鍵設(shè)備,其性能和工作狀態(tài)直接關(guān)系到工作人員的人身安全、設(shè)備運(yùn)行的經(jīng)濟(jì)性和礦山安全生產(chǎn)。利用虛擬儀器技術(shù)對(duì)通風(fēng)機(jī)主要性能參數(shù)進(jìn)行檢測(cè),補(bǔ)償測(cè)試環(huán)節(jié)產(chǎn)生的誤差,對(duì)保證通風(fēng)機(jī)檢測(cè)的準(zhǔn)確性和有效性具有重要意義。論文根據(jù)煤礦在用通風(fēng)機(jī)安全檢測(cè)檢驗(yàn)規(guī)范,采用虛擬儀器技術(shù)研制了基于USB總線(xiàn)的礦井通風(fēng)機(jī)檢測(cè)虛擬儀器。論文對(duì)礦井通風(fēng)機(jī)檢測(cè)的主要參數(shù)進(jìn)行了研究分析,確定了包括對(duì)風(fēng)量、風(fēng)壓、溫度、濕度、功率等主要參數(shù)的測(cè)量方法和測(cè)點(diǎn)布置。根據(jù)煤礦生產(chǎn)現(xiàn)場(chǎng)環(huán)境要求,綜合對(duì)比分析不同結(jié)構(gòu)虛擬儀器的特點(diǎn),確定了基于USB總線(xiàn)的硬件方案,完成了相應(yīng)傳感器和數(shù)據(jù)采集卡的選型,設(shè)計(jì)了儀器所需要的調(diào)理電路。以L(fǎng)abVIEW為開(kāi)發(fā)平臺(tái),采用模塊化的設(shè)計(jì)方法開(kāi)發(fā)了通風(fēng)機(jī)性能檢測(cè)虛擬儀器軟件,實(shí)現(xiàn)對(duì)通風(fēng)機(jī)主要性能參數(shù)的檢測(cè)。論文對(duì)所設(shè)計(jì)的礦井通風(fēng)機(jī)檢測(cè)虛擬儀器的硬件和軟件進(jìn)行了誤差分析。結(jié)合所選傳感器的工作原理和特性參數(shù),分析了壓力、溫度、濕度和功率等傳感器誤差產(chǎn)生原因和類(lèi)型。調(diào)理電路主要根據(jù)傳感器輸出信號(hào)的類(lèi)型和采集卡輸入信號(hào)類(lèi)型完成必要的信號(hào)I/V變換、光電隔離和濾波處理,針對(duì)所設(shè)計(jì)的調(diào)理電路的原理,分析了信號(hào)在變換和濾波過(guò)程中誤差產(chǎn)生的原因。根據(jù)NI-USB6221數(shù)據(jù)采集卡基本組成和性能指標(biāo),分析了采集卡誤差產(chǎn)生的原因。論文采用實(shí)驗(yàn)的方法,通過(guò)給定標(biāo)準(zhǔn)量對(duì)所設(shè)計(jì)的虛擬儀器的靜壓、全壓、溫度、濕度、大氣壓力以及功率通道進(jìn)行測(cè)試,得到儀器各通道的測(cè)量數(shù)據(jù)。對(duì)測(cè)量數(shù)據(jù)與給定標(biāo)準(zhǔn)量進(jìn)行對(duì)比分析和誤差計(jì)算,采用不同的擬合算法得到測(cè)量值和給定標(biāo)準(zhǔn)量的函數(shù)關(guān)系,通過(guò)對(duì)比不同擬合算法的相關(guān)系數(shù)和標(biāo)準(zhǔn)差,確定以相關(guān)系數(shù)最大、標(biāo)準(zhǔn)差最小擬合效果最佳的函數(shù)作為該通道的誤差補(bǔ)償函數(shù),并以此函數(shù)對(duì)該通道測(cè)量數(shù)據(jù)進(jìn)行修正。
[Abstract]:As the key equipment in mine production, the performance and working state of ventilator are directly related to the safety of personnel, the economy of equipment operation and the safety of mine production. It is of great significance to use virtual instrument technology to detect the main performance parameters of ventilator and to compensate the error caused by the test link to ensure the accuracy and effectiveness of fan detection. According to the safety inspection standard of mine ventilator in use, the virtual instrument based on USB bus is developed in this paper. In this paper, the main parameters of mine ventilator are studied and analyzed, and the measuring methods and measuring points are determined, including the main parameters of air volume, air pressure, temperature, humidity, power and so on. According to the requirements of coal mine production field environment, the characteristics of different structure virtual instruments are compared and analyzed, the hardware scheme based on USB bus is determined, the selection of corresponding sensors and data acquisition cards is completed, and the conditioning circuit of the instrument is designed. The virtual instrument software for fan performance testing is developed based on LabVIEW and modular design method. The main performance parameters of ventilator are tested. The hardware and software of the virtual instrument for mine fan detection are analyzed in this paper. Combined with the working principle and characteristic parameters of the selected sensor, the causes and types of sensor errors such as pressure, temperature, humidity and power are analyzed. The conditioning circuit mainly completes the necessary signal I / V transform, photoelectric isolation and filter processing according to the type of the sensor output signal and the input signal type of the acquisition card, aiming at the principle of the designed conditioning circuit. The causes of the errors in the process of signal transformation and filtering are analyzed. According to the basic composition and performance index of NI-USB6221 data acquisition card, the causes of the error of data acquisition card are analyzed. In this paper, the static pressure, total pressure, temperature, humidity, atmospheric pressure and power channel of the designed virtual instrument are measured by the method of experiment, and the measured data of each channel of the instrument are obtained. The correlation coefficient and standard deviation of different fitting algorithms are obtained by comparing the measured data with the given standard quantity and calculating the error, using different fitting algorithms to obtain the functional relationship between the measured value and the given standard quantity. The function with the largest correlation coefficient and the best fitting effect of the minimum standard deviation is determined as the error compensation function of the channel, and the measurement data of the channel is modified by this function.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TD441
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊艾兵;許超;董洋;劉侃;林園;;基于虛擬儀器的自動(dòng)測(cè)試系統(tǒng)誤差設(shè)計(jì)與處理[J];儀表技術(shù);2012年09期
2 李啟丙;;高分辨率AD轉(zhuǎn)換器的研究[J];儀表技術(shù)與傳感器;2011年10期
3 ;HERMITE SCATTERED DATA FITTING BY THE PENALIZED LEAST SQUARES METHOD[J];Journal of Computational Mathematics;2009年06期
4 郭欣;戴冶;初萬(wàn)江;王建;;淺議虛擬現(xiàn)實(shí)技術(shù)在醫(yī)學(xué)教育教學(xué)中的應(yīng)用[J];中國(guó)醫(yī)學(xué)教育技術(shù);2009年03期
5 李曼;楊富強(qiáng);馮華光;;礦用通風(fēng)機(jī)性能測(cè)試分析虛擬儀器的研發(fā)[J];風(fēng)機(jī)技術(shù);2008年04期
6 王曙光;;提高ADC分辨率的電路設(shè)計(jì)[J];機(jī)床與液壓;2007年07期
7 姜雙章;姜秋喜;;虛擬儀器技術(shù)及其軍事應(yīng)用[J];國(guó)防科技;2006年03期
8 趙恒平,俞金壽;化工數(shù)據(jù)預(yù)處理及其在建模中的應(yīng)用[J];華東理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年02期
9 戚新波,范崢,陳學(xué)廣;基于虛擬儀器技術(shù)的風(fēng)機(jī)性能測(cè)試系統(tǒng)[J];河南科技學(xué)院學(xué)報(bào)(自然科學(xué)版);2005年01期
10 宋玲,張山鷹,裴新民,王勇,史建新;離心風(fēng)機(jī)性能測(cè)試系統(tǒng)的設(shè)計(jì)[J];新疆農(nóng)機(jī)化;2004年06期
相關(guān)碩士學(xué)位論文 前10條
1 牛青;礦井通風(fēng)機(jī)性能測(cè)試方法與系統(tǒng)的研究[D];西安科技大學(xué);2014年
2 司頡;礦井主通風(fēng)機(jī)在線(xiàn)監(jiān)測(cè)與故障診斷系統(tǒng)研究[D];西安科技大學(xué);2012年
3 韓琪;基于虛擬儀器的數(shù)據(jù)采集與分析系統(tǒng)研究與設(shè)計(jì)[D];北京交通大學(xué);2012年
4 丁鵬;基于USB數(shù)據(jù)采集的虛擬儀器的研究與設(shè)計(jì)[D];西安電子科技大學(xué);2010年
5 程琴;基于LabVIEW的風(fēng)機(jī)性能遠(yuǎn)程測(cè)試系統(tǒng)的研究[D];西北農(nóng)林科技大學(xué);2008年
6 梁皖貴;基于虛擬儀器的信號(hào)設(shè)備測(cè)試系統(tǒng)故障檢測(cè)及誤差分析[D];北京交通大學(xué);2008年
7 王翠;基于虛擬儀器礦山固定設(shè)備測(cè)試系統(tǒng)的研究[D];西安科技大學(xué);2006年
8 陳棟;基于LabVIEW平臺(tái)多路并行動(dòng)態(tài)測(cè)試虛擬儀器的研究[D];南京航空航天大學(xué);2005年
9 張文;壓阻式壓力傳感器的溫度誤差補(bǔ)償技術(shù)及虛擬儀器的組建[D];合肥工業(yè)大學(xué);2004年
10 趙彥曉;壓力傳感器的熱零點(diǎn)漂移補(bǔ)償與非線(xiàn)性修正[D];河北工業(yè)大學(xué);2003年
,本文編號(hào):1882290
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1882290.html