Binder弛張篩動態(tài)特性研究及及關(guān)鍵結(jié)構(gòu)優(yōu)化
本文選題:弛張篩 + 動態(tài)特性 ; 參考:《安徽理工大學(xué)》2016年碩士論文
【摘要】:弛張篩是從傳統(tǒng)的圓振動篩發(fā)展而來的一種新型篩分機(jī)械。篩網(wǎng)由可伸縮的聚氨酯橡膠材料制成,在工作時(shí),篩網(wǎng)交替地拉緊和松弛,使物料產(chǎn)生前進(jìn)彈跳運(yùn)動,可避免物料黏附篩網(wǎng)并堵塞篩孔。同時(shí),由于采用了撓性篩板,使拋射加速度達(dá)到重力加速度的30-50倍,篩板最大振幅可達(dá)40mm,因此篩孔不易堵塞,篩分效率高,處理量大,動負(fù)荷小,功耗少,噪聲低。論文總結(jié)了弛張篩的研究現(xiàn)狀,并對弛張篩的結(jié)構(gòu)與工作原理進(jìn)行概述。以數(shù)值模擬以及多維振動理論為基礎(chǔ),以弛張篩動靜梁與篩面運(yùn)動為對象,利用有限元仿真軟件ANSYS Workbench與Matlab動態(tài)仿真模塊Simulink,對弛張篩動靜梁的運(yùn)動和篩網(wǎng)上的單顆粒運(yùn)動進(jìn)行仿真計(jì)算,并對其速度、加速度和運(yùn)行位置進(jìn)行分析。論文具體研究成果如下:基于弛張篩的工作原理建立了弛張篩簡化模型,并在ANSYS Workbench進(jìn)行了動力學(xué)分析,繪制出方形塊及橫梁的運(yùn)動曲線。對X與Z方向的曲線進(jìn)行分析,找出其基本規(guī)律,以便建立弛張篩動力學(xué)數(shù)學(xué)模型,并與其進(jìn)行對比,驗(yàn)證數(shù)學(xué)模型的可靠性。在混聯(lián)振動模型的基礎(chǔ)上建立弛張篩振動模型,并將其分解為X與Y方向的振動模型進(jìn)行求解,建立數(shù)學(xué)模型。代入有限元簡化模型的參數(shù)進(jìn)行數(shù)值仿真,得出運(yùn)動曲線與有限元仿真結(jié)果進(jìn)行對比,驗(yàn)證振動模型與數(shù)學(xué)模型的可靠性。針對Binder弛張篩進(jìn)行仿真,將真實(shí)數(shù)據(jù)代入振動模型中,以其標(biāo)準(zhǔn)振幅參數(shù)對橡膠彈簧的參數(shù)進(jìn)行設(shè)計(jì),并得到弛張篩運(yùn)行軌跡。分別減少與增加小橡膠塊的數(shù)量,代入弛張篩中對其運(yùn)動曲線進(jìn)行分析,得到弛張篩振幅調(diào)整的機(jī)理。對篩網(wǎng)進(jìn)行動力學(xué)研究,將計(jì)算所得的動梁與靜梁運(yùn)動軌跡加載在篩網(wǎng)有限元模型中,進(jìn)行瞬態(tài)動力學(xué)仿真并觀察得到篩面運(yùn)動時(shí)的速度、加速度等參數(shù)變化。將動梁與靜梁的運(yùn)動軌跡在20°方向進(jìn)行分解,并對篩面水平運(yùn)動時(shí)的應(yīng)變變化情況進(jìn)行研究,得到變化規(guī)律。對單顆粒在篩面上的運(yùn)動進(jìn)行分析,得到顆粒對篩面沖擊力的大小范圍,并得到顆粒的運(yùn)動軌跡、速度變化以及運(yùn)動時(shí)的角度變化,對顆粒的運(yùn)動方式與基本運(yùn)動的規(guī)律進(jìn)行了總結(jié)。使用ANSYS Workbench中的優(yōu)化設(shè)計(jì)模塊對五邊形的具體尺寸進(jìn)行優(yōu)化,并得出其在定載荷下的最優(yōu)參數(shù)。在得到的五邊形截面基礎(chǔ)上,對螺栓孔的位置與應(yīng)變的關(guān)系進(jìn)行分析,確定其與方形塊之間的距離,進(jìn)一步減小動梁固定板應(yīng)變的大小。對完成截面優(yōu)化與螺栓孔位置的固定板進(jìn)行形狀拓?fù)鋬?yōu)化,去除多余部分,以實(shí)現(xiàn)動梁固定板的最優(yōu)化結(jié)構(gòu)。并對優(yōu)化完成的固定板進(jìn)行模態(tài)分析,以求得其固有頻率以及結(jié)構(gòu)易破壞部分。使用因果軸分析尋找弛張篩優(yōu)化設(shè)計(jì)所面臨的問題,并根據(jù)因果軸分析所得的結(jié)論進(jìn)行矛盾分析,得到設(shè)計(jì)解決的方向,并得出具體實(shí)施方案。將分析所得的解決方案進(jìn)行整合,并與當(dāng)前的產(chǎn)品進(jìn)行比較,驗(yàn)證其實(shí)際使用效果。
[Abstract]:The screen is a new type of screening machine developed from the traditional circular vibrating screen. The screen is made of flexible polyurethane rubber material. At work, the screen is stretched and relaxed alternately, making the material move forward and jumping, and the material can avoid the sieve mesh and plug the sieve. At the same time, the flexible sieve plate is used to make the ejection acceleration. 30-50 times of the gravitational acceleration, the maximum amplitude of the sieve plate can reach 40mm, so the sieve hole is not easy to block, the screening efficiency is high, the amount of treatment is large, the dynamic load is small, the power consumption is low, and the noise is low. The paper summarizes the research status of the relaxation screen and describes the structure and working principle of the relaxation sieve. The motion of the screen moving and static beam and the screen surface are taken as the object. The finite element simulation software ANSYS Workbench and the Matlab dynamic simulation module Simulink are used to simulate the motion of the moving and static beam and the single particle motion on the screen, and the velocity, acceleration and operation position of the screen are analyzed. The concrete research results are as follows: Based on the relaxation screen The working principle has established the simplified model of FLAsia screen, and the dynamic analysis of the ANSYS Workbench is carried out, the motion curves of the square block and the beam are drawn. The curves of the X and the Z direction are analyzed to find out the basic rules, so as to establish the dynamic mathematical model of the FLAsia screen, and compare it with it to verify the reliability of the mathematical model. On the basis of the dynamic model, the vibration model of the FLAsia screen is established and decomposed into a vibration model of X and Y direction. A mathematical model is set up. The numerical simulation of the parameters of the simplified finite element model is carried out. The comparison of the motion curves with the finite element simulation results is made to verify the reliability of the vibration model and the mathematical model. The Binder relaxation is verified. The screen is simulated, the real data is replaced in the vibration model, the parameters of the rubber spring are designed with its standard amplitude parameters, and the running track of the FLAsia screen is obtained. The number of small rubber blocks is reduced and increased, and the motion curves of the FLAsia screen are analyzed in the relaxation screen. The mechanism of the adjustment of the amplitude of the FLAsia screen is obtained. The dynamics of the screen mesh is carried out. The motion trajectory of the calculated moving beam and static beam is loaded in the finite element model of the screen mesh. The transient dynamic simulation is carried out and the parameters of the velocity and acceleration are observed. The moving track of the moving beam and the static beam is decomposed in the direction of 20 degrees, and the change of the strain in the horizontal motion of the screen is studied. The motion of the single particle on the screen is analyzed. The size range of the particle impact force on the sieve surface is obtained. The motion trajectory of the particles, the change of the velocity and the change of the movement angle are obtained. The movement mode of the particles and the law of the basic motion are summed up. The optimization design module in ANSYS Workbench is used. The specific size of the Pentagon is optimized and its optimum parameters are obtained under the fixed load. On the basis of the Pentagon section, the relationship between the position of the bolt hole and the strain is analyzed to determine the distance between the bolt and the square block to further reduce the size of the strain of the fixed plate of the moving beam. The fixed plate is topologically optimized to remove the excess part to realize the optimal structure of the fixed plate of the movable beam. The modal analysis of the fixed plate is carried out to obtain the natural frequency and the easy destruction part of the structure. The problems facing the optimization design of the FLAsia screen are found by using the causality axis analysis, and the knot is based on the causal axis analysis. Discuss the contradiction analysis, get the direction of the design solution, and get the concrete implementation plan, integrate the analysis solution and compare with the current product to verify its actual use effect.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TD452;TQ336.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉初升,趙躍民,楊傳良;一種新型弛張篩[J];礦山機(jī)械;1999年07期
2 楊麗;弛張篩轉(zhuǎn)速的選擇[J];煤礦機(jī)械;2004年06期
3 黃紹服;李君;戴雪晴;;弛張篩振幅的研究[J];煤礦機(jī)械;2006年12期
4 翟宏新;;工業(yè)型弛張篩幅頻特性研究及合理工作點(diǎn)的確定[J];礦山機(jī)械;2007年04期
5 翟宏新;;基于幅頻特性的工業(yè)型弛張篩合理工作點(diǎn)的確定[J];煤炭學(xué)報(bào);2007年07期
6 盛玉祝;葉大銀;;基于虛擬樣機(jī)弛張篩面的動態(tài)分析[J];煤礦機(jī)械;2007年09期
7 左曉明;許兆美;;基于有限元分析的弛張篩篩孔幾何特征仿真分析[J];礦山機(jī)械;2010年07期
8 W.赫爾施;張明;;第三代弛張篩[J];國外金屬礦山;1993年05期
9 劉初升,趙躍民,楊傳良;弛張篩兩個設(shè)計(jì)多數(shù)的研究[J];礦山機(jī)械;1998年04期
10 葛咸浩;;弛張篩在紅柳選煤廠的應(yīng)用[J];潔凈煤技術(shù);2013年06期
相關(guān)會議論文 前2條
1 鞏固;秦杰;;直線香蕉弛張篩3mm末原煤干法脫粉在寺河礦選煤廠洗末系統(tǒng)的應(yīng)用[A];2013年全國選煤技術(shù)交流會論文集[C];2013年
2 陳兵;李萍;陳小陽;;伯特利(Birtley)弛張篩在古書院礦選煤廠中的應(yīng)用研究[A];2013年全國選煤技術(shù)交流會論文集[C];2013年
相關(guān)博士學(xué)位論文 前1條
1 董海林;大型集中驅(qū)動式弛張篩的篩面動力學(xué)特性研究[D];中國礦業(yè)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前6條
1 王培路;慣性式弛張篩的動力學(xué)分析[D];太原理工大學(xué);2016年
2 陳孝U,
本文編號:1858021
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1858021.html