煤結構破壞分解產生CO規(guī)律、機理及煤自燃指標修正研究
發(fā)布時間:2018-05-03 00:42
本文選題:次生CO + 產生規(guī)律 ; 參考:《河南理工大學》2016年碩士論文
【摘要】:一氧化碳(CO)是煤自燃氣體產物之一,也是目前我國大多數(shù)煤礦用來預報煤自然發(fā)火的標志氣體。然而諸多煤礦現(xiàn)場觀測結果發(fā)現(xiàn)CO經常異常超限但并未發(fā)生煤自燃情況,因此有效辨識井下CO氣體來源,了解其產生規(guī)律,將對提高井下煤自燃預報準確度有著重要指導意義。論文利用自行設計的煤體破碎實驗平臺,以內蒙長焰煤為研究對象,從煤樣質量和電機轉速兩方面研究了因煤結構破壞分解產生CO(S-CO)產生規(guī)律及溫度變化規(guī)律,結果表明:在煤樣破碎過程中,各工況S-CO出現(xiàn)時間和溫升開始變化時間受煤樣質量和電機轉速影響不明顯,但是在電機轉速從15000r/min降低到10000r/min時,S-CO和溫升出現(xiàn)時間會分別明顯推遲50s和70s左右,各工況S-CO平均產生速率和最大濃度均隨著電機轉速和煤樣質量增加而增加,溫升隨電機轉速增加變化明顯,受煤樣質量影響并不明顯。S-CO濃度變化過程可隨破碎時間分為無S-CO產生階段、S-CO呈線性增長階段和S-CO呈類指數(shù)增長階段。對各工況破碎后煤樣繼續(xù)開展紅外光譜實驗,結合傅里葉變換紅外光譜法研究了S-CO產生機理,通過對煤體破碎過程中表面官能團及化學鍵變化情況分析,認為S-CO主要產生于破碎初期煤結構破壞引發(fā)的羧酸、醚、過氧化物斷裂和破碎后期隨著刀片做功內能增大,羧基、雜氧鍵、過氧鍵、醚鍵、羥基等含氧官能團活化分解釋放S-CO。通過對煤體破碎實驗數(shù)據(jù)算術分析,研究了實驗條件下各工況S-CO絕對產生量和平均產生速率,推導出S-CO絕對產生量與煤樣質量之間量化關系式。利用最小二乘法對S-CO平均產生速率和溫升進行了相關性分析,R2為0.8633,表明S-CO平均產生速率和溫升的相關性較強。建立了開采工作面S-CO濃度計算模型,推導出開采過程中S-CO濃度計算方法,并利用計算公式對工作面CO濃度和CO濃度變化速率進行修正。
[Abstract]:Carbon monoxide (CO) is one of the products of coal spontaneous combustion, and it is also the symbol gas used to predict the spontaneous combustion of coal in most coal mines in China. However, many coal mine field observation results show that CO often exceeds the limit, but no spontaneous combustion of coal occurs. Therefore, it is important to identify the underground CO gas source and understand its production law, which will be of great significance to improve the prediction accuracy of underground coal spontaneous combustion. In this paper, based on the experimental platform of coal fragmentation designed by ourselves and taking long flame coal in Inner Mongolia as the research object, the law of CO-S-CO-producing and the law of temperature change due to the decomposition of coal structure are studied from two aspects of coal sample quality and motor speed. The results show that in the process of coal sample crushing, the time of S-CO appearance and the change time of temperature rise are not obviously affected by coal sample quality and motor speed. However, when the speed of motor is reduced from 15000r/min to 10000r/min, the emergence time of S-CO and temperature rise will be obviously delayed about 50s and 70s, respectively. The average rate and maximum concentration of S-CO in each working condition will increase with the increase of motor speed and coal sample mass. The temperature rise changes obviously with the increase of motor speed, and the change process of S-CO concentration is not obviously affected by coal sample mass. The change process of S-CO concentration can be divided into linear growth stage and S-CO exponential growth stage with breaking time. The infrared spectrum experiments were carried out on the coal samples after crushing under various conditions. The mechanism of S-CO production was studied by means of Fourier transform infrared spectroscopy. The changes of surface functional groups and chemical bonds in the process of coal crushing were analyzed. It is considered that S-CO mainly comes from carboxylic acid, ether, peroxide breakage and late breakage caused by coal structure destruction in the early stage of crushing. The activation decomposition of carboxyl, hetero, superoxide, ether, hydroxyl and other oxygen-containing functional groups releases S-COs with the increase of the energy in the blade work. Based on the arithmetic analysis of the experimental data of coal body crushing, the absolute production rate and the average production rate of S-CO under different conditions are studied, and the quantitative relationship between the absolute production of S-CO and the quality of coal sample is derived. The correlation analysis between the average rate of S-CO production and temperature rise was carried out by using the least square method. The R2 was 0.8633, which indicated that the average production rate of S-CO had a strong correlation with temperature rise. The calculation model of S-CO concentration in mining face is established, the calculation method of S-CO concentration in mining process is deduced, and the change rate of CO concentration and CO concentration in working face are modified by using the calculation formula.
【學位授予單位】:河南理工大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TD752.2
【相似文獻】
相關期刊論文 前10條
1 ;《煤結構與反應性》由科學出版社出版[J];煤炭轉化;2003年01期
2 張代鈞,蔣為民;煤的彈性與煤結構的關系[J];煤炭工程師;1990年04期
3 陳昌國,鮮學福;煤結構的研究及其發(fā)展[J];煤炭轉化;1998年02期
4 程君,周安寧,李建偉;煤結構研究進展[J];煤炭轉化;2001年04期
5 曾凡桂,謝克昌;煤結構化學的理論體系與方法論[J];煤炭學報;2004年04期
6 馮杰,李文英,李凡,謝克昌;煤結構特征與煤反應活性關系的研究[J];煤炭轉化;1996年02期
7 陳宏剛,李凡,,謝克昌;煤結構的計算機輔助分子設計研究[J];煤炭轉化;1996年04期
8 袁銀梅,鄭明東,李朝祥;煤結構研究及其在新材料制備中應用[J];煤化工;2004年01期
9 謝克昌;;煤結構和反應性的多方位認識和研究——Ⅰ.煤的結構[J];煤炭轉化;1992年01期
10 王安杰,郭樹才;神府大柳塔煤結構淺析[J];燃料化學學報;1993年01期
相關會議論文 前10條
1 陸偉;;防治煤自燃新技術一高倍阻化泡沫[A];2007年全國煤礦安全學術年會會議資料匯編[C];2007年
2 豐丙章;;煤自燃火災防治技術研究[A];2004全國阻燃學術年會論文集[C];2004年
3 肖e
本文編號:1836217
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1836217.html
最近更新
教材專著