采煤機(jī)牽引部雙電機(jī)驅(qū)動(dòng)協(xié)調(diào)控制研究
本文選題:采煤機(jī) + 牽引系統(tǒng)。 參考:《重慶大學(xué)》2016年碩士論文
【摘要】:隨著采煤機(jī)裝機(jī)功率和開采能力的提升,牽引部控制系統(tǒng)控制效果的優(yōu)劣及其機(jī)械系統(tǒng)動(dòng)態(tài)性能表現(xiàn)成為影響采煤機(jī)工作穩(wěn)定性的重要因素。目前采煤機(jī)牽引部雙電機(jī)控制方式多采用為主從控制,而由于主從控制同步精度差,存在滯后,導(dǎo)致銷輪銷軌嚙合偏載的情況時(shí)有發(fā)生,而業(yè)內(nèi)學(xué)者對(duì)該方面的研究較少,且集中在靜態(tài)嚙合力學(xué)特性和輪齒齒廓研究等方面,如行走輪和銷軌齒廓對(duì)嚙合應(yīng)力大小的影響、行走輪齒的接觸和彎曲強(qiáng)度、行走機(jī)構(gòu)運(yùn)動(dòng)仿真等等,幾乎沒有將驅(qū)動(dòng)端電機(jī)的控制因素考慮進(jìn)來(lái),也沒有研究前、后銷輪銷軌的機(jī)械耦合關(guān)系。本文從動(dòng)力學(xué)角度對(duì)采煤機(jī)牽引部雙電機(jī)協(xié)調(diào)驅(qū)動(dòng)系統(tǒng)的動(dòng)態(tài)特性進(jìn)行了研究,為了分析采煤機(jī)牽引系統(tǒng)在截煤過程中的動(dòng)態(tài)響應(yīng),建立了牽引部雙電機(jī)驅(qū)動(dòng)控制模型和前后牽引機(jī)械系統(tǒng)的虛擬樣機(jī)模型,進(jìn)而建立了采煤機(jī)雙電機(jī)牽引系統(tǒng)機(jī)—電耦合模型,實(shí)現(xiàn)了復(fù)雜強(qiáng)耦合機(jī)電系統(tǒng)的聯(lián)合仿真,研究工作的主要內(nèi)容如下:(1)對(duì)所研究的MG300/700-WD型電牽引采煤機(jī)進(jìn)行了牽引傳動(dòng)系統(tǒng)參數(shù)的選取和匹配,并對(duì)齒輪強(qiáng)度進(jìn)行了校核;針對(duì)行走機(jī)構(gòu)非共軛曲面相互嚙合導(dǎo)致齒銷磨損十分嚴(yán)重的問題,匹配設(shè)計(jì)了漸開線牽引齒輪與齒條形銷軌。(2)根據(jù)匹配設(shè)計(jì)的機(jī)構(gòu)幾何參數(shù)建立三維實(shí)體模型從而建立整機(jī)Adams動(dòng)力學(xué)模型,對(duì)牽引部傳動(dòng)系統(tǒng)進(jìn)行了運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)仿真分析,通過仿真得到了傳動(dòng)系統(tǒng)各級(jí)齒輪和銷輪銷軌間的運(yùn)動(dòng)和動(dòng)態(tài)嚙合力響應(yīng)。(3)建立了采煤機(jī)牽引電機(jī)在三相靜止坐標(biāo)下的動(dòng)態(tài)數(shù)學(xué)模型,并利用坐標(biāo)變換結(jié)合矢量控制變換,基于Simulink軟件搭建了電機(jī)的矢量調(diào)速模型,結(jié)合單電機(jī)矢量調(diào)速模型,建立了雙電機(jī)協(xié)調(diào)控制模型,仿真分析了傳統(tǒng)采煤機(jī)主從控制的電機(jī)響應(yīng)特性,并在主從控制的基礎(chǔ)上提出了改進(jìn)的同步控制方法。(4)基于雙電機(jī)控制模型和牽引部虛擬樣機(jī)模型建立了牽引部機(jī)電耦合模型,仿真分析了傳統(tǒng)采煤機(jī)在正常牽引工況下的系統(tǒng)響應(yīng)特性,仿真結(jié)果表明傳統(tǒng)采煤機(jī)較多采用的主從控制控制效果差,易導(dǎo)致電機(jī)偏載運(yùn)行,穩(wěn)定運(yùn)行時(shí)偏載率也達(dá)到11.7%,調(diào)速過程中偏載率高達(dá)61.5%;在此基礎(chǔ)上,本文提出了兩種同步精度更高的協(xié)調(diào)控制方法:即交叉耦合控制和并行控制。仿真比較了采煤機(jī)在幾種典型工況下不同協(xié)調(diào)控制方法的機(jī)電動(dòng)態(tài)響應(yīng)。
[Abstract]:With the improvement of the power and mining capacity of shearer, the control effect of traction control system and the dynamic performance of mechanical system become important factors that affect the stability of shearer. At present, the dual motor control mode in the traction part of shearer is mainly controlled by slave control. However, due to the poor synchronization precision of master-slave control and lag, the misalignment load of pin and rail occurs from time to time, but the research on this aspect is less studied by scholars in this field. And it focuses on the static meshing mechanical characteristics and gear tooth profile, such as the influence of walking wheel and pin rail tooth profile on meshing stress, the contact and bending strength of walking gear tooth, the movement simulation of walking mechanism, etc. The control factors of the motor at the drive end are hardly taken into account, and the mechanical coupling relationship between the pin and rail of the rear pin is not studied before. In this paper, the dynamic characteristics of the dual motor coordinated drive system in the traction part of the shearer are studied from the dynamic point of view. In order to analyze the dynamic response of the haulage system of the shearer in the coal cutting process, The driving control model of double motor in traction department and the virtual prototype model of front and rear traction machinery system are established, and then the mechanical-electric coupling model of double motor traction system of shearer is established, which realizes the joint simulation of complex and strong coupling electromechanical system. The main contents of the research are as follows: (1) the parameters of the traction drive system of the MG300/700-WD type electric traction shearer are selected and matched, and the gear strength is checked. In view of the serious problem of tooth pin wear caused by non-conjugate surface meshing of walking mechanism, The involute traction gear and rack pin rail are designed. According to the geometric parameters of the matching design, the three-dimensional solid model is established to establish the Adams dynamic model of the whole machine, and the kinematics and dynamics simulation analysis of the traction part transmission system is carried out. The dynamic mathematical model of shearer traction motor under three-phase static coordinate is established by simulation, and the dynamic meshing force response between gear and pin rail of drive system is obtained. The coordinate transformation is combined with vector control transformation. Based on the Simulink software, the vector speed regulation model of the motor is built. Combined with the vector speed regulation model of the single motor, the coordinated control model of the double motor is established, and the motor response characteristics of the master-slave control of the traditional shearer are simulated and analyzed. On the basis of master-slave control, an improved synchronous control method is proposed. (4) based on the dual motor control model and the traction virtual prototype model, the mechanical and electrical coupling model of the traction part is established. The system response characteristics of the traditional shearer under normal traction condition are analyzed by simulation. The simulation results show that the master-slave control effect of the traditional shearer is poor, which can easily lead to the running of the motor under eccentric load. At the same time, the biasing load rate is 11.7%, and the offset load rate is up to 61.5% in the course of speed regulation. On the basis of this, two kinds of coordination control methods with higher synchronization precision are proposed in this paper: cross coupling control and parallel control. The electromechanical dynamic responses of different coordinated control methods of shearer under several typical conditions are simulated and compared.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TD632.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉元林;張力仁;邢華璐;王婧婷;;基于ADAMS的采煤機(jī)行走機(jī)構(gòu)力學(xué)特性分[J];機(jī)械工程師;2015年12期
2 王奪;;高適應(yīng)性大功率采煤機(jī)牽引變頻調(diào)速系統(tǒng)的研制[J];煤礦機(jī)械;2015年11期
3 周笛;張旭方;楊周;張義民;;采煤機(jī)牽引部傳動(dòng)系統(tǒng)動(dòng)態(tài)可靠性分析[J];煤炭學(xué)報(bào);2015年11期
4 張金平;張延軍;;基于Pro/E采煤機(jī)牽引傳動(dòng)部載荷特性數(shù)值分析[J];煤炭技術(shù);2015年07期
5 鮑志強(qiáng);;采煤機(jī)行走輪輪齒斷裂的原因分析[J];科技致富向?qū)?2015年02期
6 楊振虎;;淺析UG軟件在機(jī)械設(shè)計(jì)中的應(yīng)用[J];電子制作;2015年02期
7 成鳳鳳;楊兆建;王淑平;王學(xué)文;;采煤機(jī)牽引輪與刮板輸送機(jī)銷軌的嚙合仿真[J];煤礦機(jī)械;2013年07期
8 王興文;張勇濤;李英;鄭德福;;采煤機(jī)行走部齒輪磨損的原因分析及預(yù)防措施[J];煤礦機(jī)械;2013年03期
9 趙麗娟;孫東閣;孫林;;采煤機(jī)牽引部剛?cè)狁詈舷到y(tǒng)仿真研究[J];機(jī)械傳動(dòng);2012年03期
10 劉濤;張麗明;;采煤機(jī)銷軌輪斷齒原因分析及改進(jìn)措施[J];山西焦煤科技;2011年07期
相關(guān)碩士學(xué)位論文 前4條
1 郭冬梅;采煤機(jī)牽引部調(diào)速系統(tǒng)研究與關(guān)鍵零件的優(yōu)化[D];遼寧工程技術(shù)大學(xué);2011年
2 呂華林;異步電機(jī)矢量控制變頻調(diào)速系統(tǒng)的研究[D];武漢理工大學(xué);2010年
3 孫江;多電機(jī)同步協(xié)調(diào)控制系統(tǒng)的研究[D];太原科技大學(xué);2009年
4 王洪英;采煤機(jī)鎬形齒滾筒載荷的計(jì)算機(jī)模擬[D];遼寧工程技術(shù)大學(xué);2002年
,本文編號(hào):1818221
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1818221.html