天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

選煤信息化系統(tǒng)的構建及其智能控制技術的探究與應用

發(fā)布時間:2018-04-27 21:43

  本文選題:信息化平臺 + 重介質選煤。 參考:《曲阜師范大學》2017年碩士論文


【摘要】:煤炭是一種不可再生能源,隨著生產生活的消耗,其儲量迅速下降。但是其作為國家基礎性能源的地位沒有變,國家眾多產業(yè)還是以其為基礎。但是目前就國內情況來說,我國煤炭利用率不高,選煤廠信息化水平較低,選煤精度較差。尤其是在重介質選煤密度控制問題上,采用常規(guī)PID控制,易出現(xiàn)大滯后、非線性,現(xiàn)有的選煤工藝已經不能滿足市場的要求,并且整個生產過程中信息化存在“孤島效應”。本文旨在實現(xiàn)選煤過程的信息化控制,設計重介質選煤智能技術控制系統(tǒng),來提高選煤的產量和精度。本文以選煤廠為工業(yè)背景,介紹了智能控制技術在選煤信息化系統(tǒng)中的實際應用,敘述了選煤工藝流程,針對選煤廠的信息滯后問題,設計了以工業(yè)以太網(wǎng)為核心的綜合信息化平臺。該平臺將儲運集控中心、原煤集控中心、中心調度室、重介水洗車間、儲運配電室和重介選矸等分別安裝以太網(wǎng)交換機并鋪設光纜,形成一副巨大的工業(yè)環(huán)網(wǎng),由調度中心統(tǒng)一管理調控。實現(xiàn)關鍵工藝節(jié)點參數(shù)在線檢測、信息化數(shù)據(jù)傳輸,選煤過程控制自動化以及生產數(shù)據(jù)綜合到綜合信息化平臺上,實現(xiàn)數(shù)據(jù)的整合。從而為管理人員提供重要數(shù)據(jù)參考,來對現(xiàn)場設備的運行狀態(tài)自動檢測,實現(xiàn)選煤系統(tǒng)信息化控制。重介質旋流器中的懸浮液密度是影響選煤精度和質量的關鍵因素,不同密度波動下能生成含雜率不同的精煤,需要控制密度在恒定狀態(tài)下才能分離出最優(yōu)的產品。為了實現(xiàn)重介選煤過程的數(shù)據(jù)自動調控和密度恒定控制目標,本文重點研究了重介質密度控制系統(tǒng),利用計算法建立了數(shù)學模型,近似為二階純遲延函數(shù)。設計了重介質密度控制器,該控制器基于PSO和BP神經網(wǎng)絡算法,結合PSO算法的選優(yōu)能力和BP神經網(wǎng)絡的自學習能力,將控制重介質旋流器懸浮液密度的PID參數(shù)進行了優(yōu)化,實現(xiàn)了控制參數(shù)的實時在線整定。通過仿真結果顯示,該算法響應速度快、穩(wěn)態(tài)誤差小、魯棒性和可調性強,能很好的解決重介選煤過程中出現(xiàn)的大滯后、非線性問題。其算法實現(xiàn)過程主要是通過OPC技術實現(xiàn)對工藝過程的數(shù)據(jù)采集,然后借助MATLAB軟件工具實現(xiàn)PSO_BPPID優(yōu)化算法,最終把運算后的數(shù)據(jù)送給監(jiān)測平臺進而傳送給現(xiàn)場控制裝置。此過程中監(jiān)測平臺與控制裝置借助于實時以太網(wǎng)技術實現(xiàn)簡單的數(shù)據(jù)傳輸。通過對選煤過程的優(yōu)化設計,大大提高了選煤過程中的可靠性和穩(wěn)定性,設備故障頻率明顯降低,控制精度和生產效率明顯提高,同時以太網(wǎng)技術的引入也大大提高了煤礦生產過程的信息化建設。
[Abstract]:Coal is a kind of non-renewable energy, with the consumption of production and life, its reserves decline rapidly. But its status as the national basic energy has not changed, the country's many industries are based on it. But at present, the utilization ratio of coal is not high, the information level of coal preparation plant is low, and the precision of coal preparation is poor. Especially in the density control of heavy medium coal preparation, the conventional PID control is easy to appear large lag, nonlinear, the existing coal preparation technology can not meet the requirements of the market, and the entire production process information exists in the "island effect". The purpose of this paper is to realize the information control of coal preparation process and to design the intelligent control system of heavy medium coal preparation to improve the production and precision of coal preparation. Taking the coal preparation plant as the industrial background, this paper introduces the practical application of intelligent control technology in the coal preparation information system, and describes the coal preparation process, aiming at the information lag problem of the coal preparation plant. A comprehensive information platform based on industrial Ethernet is designed. The platform will install Ethernet switch and lay optical cable in storage and transportation centralized control center, raw coal centralized control center, central dispatching room, heavy medium washing workshop, storage and distribution room and heavy medium gangue respectively, forming a huge industrial ring network. By the dispatch center unified management control. The key process node parameters on-line detection, information data transmission, coal preparation process control automation and production data integration on the integrated information platform are realized, and the data integration is realized. So it can provide important data reference for managers to automatically detect the running state of field equipment and realize the information control of coal preparation system. The density of suspensions in heavy medium hydrocyclone is the key factor to affect the precision and quality of coal preparation. Under different density fluctuation, the fine coal with different impurity content can be produced, and the optimal product can be separated only when the density is controlled in a constant state. In order to realize automatic data control and constant density control in heavy medium coal preparation process, the density control system of heavy medium is studied in this paper, and the mathematical model is established by using the calculation method, which is approximate to the second order pure delay function. A dense medium density controller is designed. Based on the algorithm of PSO and BP neural network, the parameters of PID which control the density of suspensions of heavy medium cyclone are optimized by combining the optimization ability of PSO algorithm and the self-learning ability of BP neural network. Real-time online tuning of control parameters is realized. The simulation results show that the algorithm has the advantages of high response speed, small steady-state error, strong robustness and tunability, and can solve the problem of large lag and nonlinearity in the process of heavy coal preparation. The realization process of the algorithm is mainly to realize the data acquisition of the process process through OPC technology, and then realize the PSO_BPPID optimization algorithm by means of the MATLAB software tool. Finally, the data after calculation is sent to the monitoring platform and then transferred to the field control device. In this process, the monitoring platform and control device realize simple data transmission by means of real-time Ethernet technology. Through the optimization design of coal preparation process, the reliability and stability of coal preparation process are greatly improved, the frequency of equipment fault is obviously reduced, and the control precision and production efficiency are obviously improved. At the same time, the introduction of Ethernet technology has greatly improved the information construction of coal mine production process.
【學位授予單位】:曲阜師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD94;TP273

【參考文獻】

相關期刊論文 前10條

1 楊曉冬;任輝;;西門子S7-300與S7-1200PLC之間的以太網(wǎng)通信[J];智慧工廠;2017年01期

2 佘濤;王偉;孫藝峻;崔鑫宇;宋海龍;;西門子S7-1200PLC在電梯運行控制系統(tǒng)中的應用設計[J];自動化技術與應用;2016年11期

3 張東;劉壯;高長水;戴必柱;;基于TCP協(xié)議的PC與西門子S7-1200PLC通信研究[J];自動化技術與應用;2016年08期

4 葉俊鋒;吳奇;時宇翔;;基于S7-1200PLC的煤礦通風機監(jiān)控系統(tǒng)設計[J];煤礦機械;2014年12期

5 高俊峰;雷天華;金敏;;基于S7-1200PLC的煤礦架空乘人裝置自動控制系統(tǒng)[J];煤礦機械;2014年11期

6 呂銳;;選煤廠選煤工藝設計探討[J];科技創(chuàng)新與應用;2014年23期

7 段潤群;謝云山;;上位機軟件與S7-1200 PLC的OPC通信研究[J];自動化與儀器儀表;2014年05期

8 房紅征;史慧;韓立明;羅凱;李蕊;;基于粒子群優(yōu)化神經網(wǎng)絡的衛(wèi)星故障預測方法[J];計算機測量與控制;2013年07期

9 張鳴;李白萍;;Matlab仿真在通信原理課程中的應用[J];實驗技術與管理;2012年11期

10 任尚錦;孫鶴;任彥東;吳樹權;;中國主要干法選煤機的研究與應用[J];潔凈煤技術;2012年05期

相關博士學位論文 前2條

1 涂娟娟;PSO優(yōu)化神經網(wǎng)絡算法的研究及其應用[D];江蘇大學;2013年

2 張雷;工業(yè)以太網(wǎng)拓撲設計與優(yōu)化研究[D];浙江大學;2012年

相關碩士學位論文 前10條

1 龐明月;基于粒子群與遺傳算法的BP算法優(yōu)化研究[D];青島理工大學;2014年

2 姜柏莊;基于PSO算法優(yōu)化的模糊PID異步電動機控制系統(tǒng)研究[D];湖南科技大學;2014年

3 張彩云;基于改進PSO算法的模糊神經網(wǎng)絡研究[D];哈爾濱理工大學;2014年

4 史朝亞;基于PSO算法無線傳感器網(wǎng)絡覆蓋優(yōu)化的研究[D];南京理工大學;2013年

5 王耀東;基于改進粒子群算法的BP神經網(wǎng)絡優(yōu)化及應用[D];西安科技大學;2012年

6 韓基超;基于粒子群優(yōu)化的神經網(wǎng)絡及其集成算法研究[D];大連海事大學;2011年

7 云雪峰;基于組態(tài)王和MATLAB的預測控制器實現(xiàn)設計[D];內蒙古科技大學;2009年

8 孫娓娓;BP神經網(wǎng)絡的算法改進及應用研究[D];重慶大學;2009年

9 劉志;基于OPC技術的生產數(shù)據(jù)采集與過程監(jiān)控系統(tǒng)研究與開發(fā)[D];合肥工業(yè)大學;2009年

10 喻支乾;基于組態(tài)王、PLC及變頻器在恒壓供水控制系統(tǒng)的設計[D];山東大學;2008年

,

本文編號:1812456

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/kuangye/1812456.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶8d6e6***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com