潘三礦水力沖孔防突技術(shù)研究
本文選題:水力沖孔 + 數(shù)值模擬。 參考:《安徽理工大學(xué)》2015年碩士論文
【摘要】:煤炭作為基礎(chǔ)能源,是我國(guó)實(shí)現(xiàn)經(jīng)濟(jì)可持續(xù)發(fā)展的基本保證。目前,隨著我國(guó)煤礦開(kāi)采深度的增加,大量煤礦將面臨低透氣性、地應(yīng)力高、瓦斯含量高、地質(zhì)情況復(fù)雜等嚴(yán)峻問(wèn)題,嚴(yán)重制約著煤炭安全高效的開(kāi)采。水力沖孔具有操作簡(jiǎn)單、安全性高等優(yōu)勢(shì),在高瓦斯低透氣性突出煤層中得以廣泛應(yīng)用,且在我國(guó)多個(gè)礦區(qū)取得了較好的消突效果。 本文通過(guò)查閱資料對(duì)現(xiàn)有水力沖孔技術(shù)的的研究基礎(chǔ)上,了解了水力沖孔水射流的結(jié)構(gòu)特征、幾種常見(jiàn)的水射流破煤假說(shuō)、水射流破煤的過(guò)程和影響因素及水力沖孔增透機(jī)理。同時(shí),應(yīng)用ANSYS/LS-DYNA模擬軟件對(duì)高壓水射流破煤的過(guò)程及水力沖孔前后鉆孔周圍煤體應(yīng)力應(yīng)變的變化進(jìn)行了分析。由模擬可知,當(dāng)水射流壓力為10Mpa時(shí),煤體內(nèi)最終形成漏斗形的破碎坑,煤體以壓碎破壞為主,拉伸破壞為輔;水力沖孔后,在地應(yīng)力的作用下鉆孔周圍出現(xiàn)了大面積的應(yīng)力應(yīng)變集中現(xiàn)象,煤體向鉆孔方向移動(dòng),在煤體的移動(dòng)過(guò)程中,煤體內(nèi)部出現(xiàn)拉應(yīng)力和剪應(yīng)力,最終導(dǎo)致鉆孔周圍煤體破碎產(chǎn)生裂隙,煤層的透氣性得以增加。 最后,在潘三礦進(jìn)行水力沖孔試驗(yàn),單孔出煤量達(dá)到3t,沖孔過(guò)程中,出煤量和水壓的關(guān)系不單純是正相關(guān)關(guān)系,13-1煤最優(yōu)沖孔水壓為10~15MP;出煤總量隨著沖孔時(shí)間的增加保持遞增趨勢(shì),至一定程度后逐漸趨于穩(wěn)定:沖孔后的瓦斯流量衰減系數(shù)僅為沖孔前的1、3,煤層透氣性顯著增加。通過(guò)連續(xù)37天的瓦斯抽采,沖孔影響半徑達(dá)到8.5m。通過(guò)考察分析,在沖孔影響半徑內(nèi),煤層的瓦斯壓力和瓦斯含量顯著下降,瓦斯抽采率高,取得了較好的消突效果。因此,水力沖孔技術(shù)值得在低透氣性高瓦斯突出煤層推廣應(yīng)用。
[Abstract]:Coal, as the basic energy, is the basic guarantee to realize the sustainable development of economy in our country. At present, with the increase of coal mining depth in China, a large number of coal mines will face serious problems such as low permeability, high in-situ stress, high gas content and complex geological conditions, which seriously restrict the safe and efficient mining of coal. Hydraulic punching has the advantages of simple operation and high safety. It has been widely used in high gas and low permeability outburst coal seams, and has obtained better outburst suppression effect in many mining areas in China. Based on the research of the existing hydraulic punching technology, the structure characteristics of hydraulic punching water jet, several common hypothesis of water jet breaking coal, the process and influencing factors of water jet breaking coal and the mechanism of hydraulic punching antireflection are studied in this paper. At the same time, the process of high pressure water jet breaking coal and the change of stress and strain of coal around borehole before and after hydraulic punching are analyzed by ANSYS/LS-DYNA software. According to the simulation, when the pressure of water jet is 10Mpa, the crater formed in coal body is funnel-shaped, the coal body is mainly crushed, the tensile damage is auxiliary, and after hydraulic punching, Under the action of in-situ stress, a large area of stress and strain concentration appears around the borehole, and the coal moves towards the borehole. During the process of the coal movement, the tensile stress and shear stress appear in the coal body. Finally, the coal body around the borehole is broken, and the permeability of coal seam is increased. Finally, the hydraulic punching test was carried out in Panshan Coal Mine. The coal output of single hole reached 3 t, and during the process of punching, The relation between coal output and water pressure is not only positive correlation relation: the optimal water pressure of coal punching is 1015MP.The total coal output keeps increasing with the increase of punching time. To a certain extent the gas flow attenuation coefficient after punching is only 1 / 3 of that before punching and the permeability of coal seam increases significantly. Through continuous gas extraction for 37 days, the influence radius of punching is up to 8.5 m. Through investigation and analysis, the gas pressure and gas content of coal seam are obviously decreased, the gas extraction rate is high, and good outburst suppression effect has been achieved within the influence radius of punching hole. Therefore, hydraulic punching technique is worth popularizing in low permeability and high gas outburst coal seam.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TD713.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馬飛;宋志輝;;水射流動(dòng)力特性及破土機(jī)理[J];北京科技大學(xué)學(xué)報(bào);2006年05期
2 ;燃化部在南桐礦務(wù)局召開(kāi)水力沖孔防止煤與瓦斯突出試驗(yàn)總結(jié)會(huì)議[J];川煤科技;1974年01期
3 盧義玉;馮欣艷;李曉紅;向文英;;高壓空化水射流破碎巖石的試驗(yàn)分析[J];重慶大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年05期
4 劉忠偉;高壓水射流技術(shù)綜述[J];湖南冶金職業(yè)技術(shù)學(xué)院學(xué)報(bào);2005年03期
5 薛勝雄,王永強(qiáng),于雷,朱華清;超高壓大功率水射流技術(shù)在中國(guó)的工程應(yīng)用[J];清洗世界;2005年02期
6 趙晉紅;楊欽;王峰;蔣恒;蔣書杰;;鉆孔抽放瓦斯的防突作用機(jī)理及其分析[J];能源技術(shù)與管理;2010年01期
7 杜春志;茅獻(xiàn)彪;卜萬(wàn)奎;;水力壓裂時(shí)煤層縫裂的擴(kuò)展分析[J];采礦與安全工程學(xué)報(bào);2008年02期
8 秦超;郭立穩(wěn);張嘉勇;;高壓水射流防治煤與瓦斯突出的數(shù)值模擬及分析[J];煤;2011年11期
9 ;水力沖孔防止煤與瓦斯突出試驗(yàn)總結(jié)會(huì)議[J];煤礦安全;1974年04期
10 朱建安;申偉鵬;郭培紅;;水力沖孔技術(shù)三通防噴裝置的改進(jìn)設(shè)計(jì)[J];煤礦安全;2010年05期
,本文編號(hào):1809153
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1809153.html