大同礦區(qū)堅(jiān)硬頂板運(yùn)動(dòng)特征及對(duì)綜放工作面礦壓影響研究
本文選題:堅(jiān)硬頂板 + 覆巖“拱殼”大結(jié)構(gòu); 參考:《遼寧工程技術(shù)大學(xué)》2015年博士論文
【摘要】:大同礦區(qū)賦存有侏羅系和石炭系“雙系”煤層。開(kāi)采石炭系特厚煤層的同忻礦,在覆巖多層堅(jiān)硬頂板和上覆侏羅系多煤層開(kāi)采殘留煤柱等復(fù)雜的開(kāi)采條件下,開(kāi)采期間礦壓顯現(xiàn)強(qiáng)烈。因此,對(duì)大同礦區(qū)堅(jiān)硬頂板運(yùn)動(dòng)特征及綜放工作面礦壓影響進(jìn)行研究,為大同礦區(qū)特厚煤層安全高效開(kāi)采提供理論指導(dǎo)。論文建立“拱殼”覆巖大結(jié)構(gòu)力學(xué)模型,對(duì)覆巖大結(jié)構(gòu)的幾何特征和運(yùn)動(dòng)特征進(jìn)行分析,堅(jiān)硬巖層的強(qiáng)度、厚度和采厚共同決定了大結(jié)構(gòu)的尺度,各關(guān)鍵層控制著空間覆巖大結(jié)構(gòu)的形成和演化;結(jié)合關(guān)鍵層理論和材料力學(xué)的相關(guān)理論,確定了工作面覆巖大結(jié)構(gòu)初次失穩(wěn)和周期失穩(wěn)的能量計(jì)算公式,計(jì)算結(jié)果表明大結(jié)構(gòu)形成和失穩(wěn)對(duì)礦壓顯現(xiàn)具有重要的控制影響,揭示了大結(jié)構(gòu)形成過(guò)程的圍巖應(yīng)力升高、結(jié)構(gòu)失穩(wěn)時(shí)能量突然釋放和失穩(wěn)后圍巖應(yīng)力降低的礦壓顯現(xiàn)特征;诟倪M(jìn)的果蠅優(yōu)化算法和支持向量機(jī)理論,建立MFOA-SVM覆巖破壞高度預(yù)計(jì)模型,對(duì)石炭系特厚煤層工作面開(kāi)采覆巖破壞高度進(jìn)行預(yù)測(cè),預(yù)測(cè)結(jié)果與EH4物理探測(cè)結(jié)果相互吻合,模型具有較好的適用性;采用相似材料模擬方法,分析雙系煤層開(kāi)采的上覆巖層移動(dòng)、破壞垮落特征以及相互之間的開(kāi)采影響,堅(jiān)硬巖層的破斷控制工作面礦壓顯現(xiàn)強(qiáng)度;運(yùn)用FLAC3D數(shù)值模擬軟件,研究了侏羅系煤層群和石炭系煤層開(kāi)采圍巖破壞特征,雙系煤層開(kāi)采后采空區(qū)裂隙相互聯(lián)通;采用微震監(jiān)測(cè)分析了雙系煤層開(kāi)采影響下的微震事件時(shí)空分布特征、微震事件的能量和頻次特征,得到工作面后方300 m-500 m范圍的采空區(qū)覆巖仍然在運(yùn)動(dòng),工作面在侏羅系重疊煤柱下方區(qū)域開(kāi)采覆巖運(yùn)動(dòng)更為強(qiáng)烈。采用UDEC數(shù)值模擬軟件,分析侏羅系煤柱影響下的石炭系工作面采動(dòng)應(yīng)力演化規(guī)律,工作面回采至侏羅系煤柱對(duì)應(yīng)區(qū)域工作面圍巖應(yīng)力升高,較非煤柱區(qū)域提高了32%-37%;通過(guò)對(duì)回采巷道和工作面進(jìn)行礦壓監(jiān)測(cè),確定回采巷道和工作面的礦壓顯現(xiàn)的時(shí)空演化規(guī)律,進(jìn)一步驗(yàn)證了大結(jié)構(gòu)對(duì)礦壓顯現(xiàn)具有一定的控制作用;對(duì)不同工作面推進(jìn)速度的圍巖應(yīng)力、支架工作阻力和覆巖運(yùn)動(dòng)特征進(jìn)行分析,確定特厚煤層工作面推進(jìn)速度對(duì)礦壓顯現(xiàn)的影響,綜放工作面推進(jìn)速度越快工作面礦壓顯現(xiàn)越明顯。對(duì)同忻礦強(qiáng)礦壓顯現(xiàn)的能量特征進(jìn)行分析,確定同忻礦的強(qiáng)礦壓顯現(xiàn)是覆巖大結(jié)構(gòu)失穩(wěn)、臨近采空區(qū)側(cè)向支承壓力、本工作面超前支承壓力和侏羅系煤柱應(yīng)力傳遞多因素空間耦合作用引起的。
[Abstract]:There are Jurassic and Carboniferous "double system" coal seams in Datong mining area. In Tongxin Coal Mine of Carboniferous extra thick seam, under the complicated mining conditions such as overburden multi-layer hard roof and overlying Jurassic multi-seam mining residual coal pillar, the mine pressure appears strongly during mining. Therefore, the characteristics of hard roof movement in Datong mining area and the influence of mine pressure on fully mechanized caving face are studied to provide theoretical guidance for safe and efficient mining of extra thick coal seam in Datong mining area. In this paper, the mechanical model of "arch shell" overburden rock structure is established, and the geometric and kinematic characteristics of overburden rock structure are analyzed. The strength, thickness and mining thickness of hard rock layer together determine the scale of large structure. Each key layer controls the formation and evolution of the large structure of overlying rock in space, combined with the theory of critical layer and the theory of mechanics of materials, the energy calculation formulas for the first and periodic instability of large overburden structure in working face are determined. The calculation results show that the formation and instability of large structures have an important control effect on the formation of rock pressure, and reveal the characteristics of rock pressure behavior in the process of formation of large structures, such as the increase of surrounding rock stress, the sudden release of energy during structural instability and the decrease of surrounding rock stress after instability. Based on the improved Drosophila optimization algorithm and the support vector machine theory, the prediction model of MFOA-SVM overburden failure height is established, and the mining overburden failure height of the Carboniferous coal face is predicted. The predicted results are consistent with the EH4 physical detection results. The model has good applicability, the similar material simulation method is used to analyze the overlying strata movement, the characteristics of failure and caving and the influence of mining on each other in the mining of double system coal seam, and the breaking of hard rock strata controls the strength of rock pressure behavior in working face. The failure characteristics of surrounding rock of Jurassic coal seam group and Carboniferous coal seam mining are studied by using FLAC3D numerical simulation software. Microseismic monitoring is used to analyze the space-time distribution characteristics of microseismic events, the energy and frequency characteristics of microseismic events under the influence of double-system coal seam mining, and the results show that the overburden is still moving in the gob area of 300m-500m behind the working face. The mining overburden movement is stronger in the area below the superimposed pillar of Jurassic system. By using UDEC numerical simulation software, the evolution law of mining stress in Carboniferous coal face under the influence of Jurassic pillar is analyzed, and the surrounding rock stress of coal face in the corresponding area of coal pillar of Jurassic system is increased. Compared with the non-pillar area, it has been improved by 32-37.The time and space evolution law of the mining roadway and the coal face is determined by monitoring the mine pressure of the roadway and working face, which further verifies that the large structure has certain control function to the rock pressure appearance. Based on the analysis of surrounding rock stress, support working resistance and overburden movement characteristics of different working faces, the influence of advancing speed on the rock pressure in the face of extra thick coal seam is determined. The faster the advance speed of fully mechanized caving face, the more obvious the mine pressure appears. Based on the analysis of the energy characteristics of strong rock pressure in Tongxin mine, it is determined that the strong rock pressure behavior of Tongxin mine is the instability of overburden structure and the lateral bearing pressure near goaf. The multi-factor spatial coupling between the leading supporting pressure and the stress transfer of the Jurassic coal pillar in this working face is caused.
【學(xué)位授予單位】:遼寧工程技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TD323
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉傳孝;堅(jiān)硬頂板運(yùn)動(dòng)特征的數(shù)值模擬及非線(xiàn)性動(dòng)力學(xué)分析[J];巖土力學(xué);2005年05期
2 馬清泉;煤礦堅(jiān)硬頂板管理的一項(xiàng)重大突破[J];煤礦安全;1983年08期
3 高存寶,錢(qián)鳴高,翟明華,,吳興榮;復(fù)合型堅(jiān)硬頂板在初壓期間的再斷裂及其控制[J];煤炭學(xué)報(bào);1994年04期
4 李方立,王成,段長(zhǎng)壽;超前深孔預(yù)爆破處理堅(jiān)硬頂板的應(yīng)用[J];礦山壓力與頂板管理;2001年03期
5 尹增德,孫洪典;數(shù)值仿真在大傾角堅(jiān)硬頂板控制中應(yīng)用[J];礦山壓力與頂板管理;2002年03期
6 張洪喜;薄煤層堅(jiān)硬頂板初放管理實(shí)踐[J];煤礦開(kāi)采;2003年01期
7 牟宗龍,竇林名;堅(jiān)硬頂板突然斷裂過(guò)程中的突變模型[J];礦山壓力與頂板管理;2004年04期
8 楊海新;條帶工作面堅(jiān)硬頂板控制技術(shù)的研究[J];礦山測(cè)量;2005年01期
9 趙東升;曹恩平;劉斌;司良成;;灰?guī)r堅(jiān)硬頂板的控制技術(shù)[J];煤礦現(xiàn)代化;2007年06期
10 侯志鷹;于斌;周建峰;;大同礦區(qū)堅(jiān)硬頂板大面積整體切冒分析[J];煤礦開(kāi)采;2008年01期
相關(guān)會(huì)議論文 前10條
1 牛錫倬;;堅(jiān)硬頂板控制的進(jìn)一步提高和發(fā)展[A];礦山堅(jiān)硬巖體控制學(xué)術(shù)討論會(huì)論文集[C];1991年
2 華安增;趙立新;;松動(dòng)煤層控制堅(jiān)硬頂板[A];巖土力學(xué)數(shù)值方法的工程應(yīng)用——第二屆全國(guó)巖石力學(xué)數(shù)值計(jì)算與模型實(shí)驗(yàn)學(xué)術(shù)研討會(huì)論文集[C];1990年
3 葉波;武海濱;廖光輝;;堅(jiān)硬頂板工作面初壓管理的研究[A];山東省煤炭學(xué)會(huì)2006年年會(huì)論文集[C];2006年
4 王華;;汝箕溝煤礦堅(jiān)硬頂板控制技術(shù)[A];2012年全國(guó)煤礦安全學(xué)術(shù)年會(huì)論文集[C];2012年
5 石平五;王金安;;爆破處理堅(jiān)硬頂板的數(shù)值分析[A];礦山堅(jiān)硬巖體控制學(xué)術(shù)討論會(huì)論文集[C];1991年
6 鄧維元;;綜采工作面堅(jiān)硬頂板合理懸頂長(zhǎng)度研究[A];第四屆全國(guó)煤炭工業(yè)生產(chǎn)一線(xiàn)青年技術(shù)創(chuàng)新文集[C];2009年
7 劉樂(lè)枝;楊積海;李朝輝;;厚煤層堅(jiān)硬頂板初放技術(shù)探討[A];煤炭科學(xué)與技術(shù)研究論文集[C];2010年
8 郭正興;;晉城礦區(qū)下組煤十五號(hào)煤層綜合機(jī)械化開(kāi)采堅(jiān)硬頂板處理技術(shù)研究[A];第五屆全國(guó)煤炭工業(yè)生產(chǎn)一線(xiàn)青年技術(shù)創(chuàng)新文集[C];2010年
9 鄧永勝;王成果;李春睿;;花山礦大傾角工作面堅(jiān)硬頂板爆破弱化研究[A];綜采放頂煤技術(shù)理論與實(shí)踐的創(chuàng)新發(fā)展——綜放開(kāi)采30周年科技論文集[C];2012年
10 張占海;;大同堅(jiān)硬頂板煤層掃描電鏡觀察與工程應(yīng)用[A];中國(guó)巖石力學(xué)與工程學(xué)會(huì)第三次大會(huì)論文集[C];1994年
相關(guān)重要報(bào)紙文章 前1條
1 本報(bào)記者 李衛(wèi)中 通訊員 張愛(ài)青;“沃土”育出科技果[N];山西經(jīng)濟(jì)日?qǐng)?bào);2001年
相關(guān)博士學(xué)位論文 前5條
1 于洋;特厚煤層堅(jiān)硬頂板破斷動(dòng)載特征及巷道圍巖控制研究[D];中國(guó)礦業(yè)大學(xué);2015年
2 朱志潔;大同礦區(qū)堅(jiān)硬頂板運(yùn)動(dòng)特征及對(duì)綜放工作面礦壓影響研究[D];遼寧工程技術(shù)大學(xué);2015年
3 周楠;固體充填防治堅(jiān)硬頂板動(dòng)力災(zāi)害機(jī)理研究[D];中國(guó)礦業(yè)大學(xué);2014年
4 史紅;綜采放頂煤采場(chǎng)厚層堅(jiān)硬頂板穩(wěn)定性分析及應(yīng)用[D];山東科技大學(xué);2005年
5 龐緒峰;堅(jiān)硬頂板孤島工作面沖擊地壓機(jī)理及防治技術(shù)研究[D];中國(guó)礦業(yè)大學(xué)(北京);2013年
相關(guān)碩士學(xué)位論文 前10條
1 王艷磊;大傾角中厚煤層堅(jiān)硬頂板綜采采場(chǎng)礦壓規(guī)律研究[D];重慶大學(xué);2015年
2 劉建偉;厚煤層大采高開(kāi)采堅(jiān)硬頂板的活動(dòng)規(guī)律及控制技術(shù)研究[D];中國(guó)礦業(yè)大學(xué);2015年
3 何東旭;深部環(huán)境下堅(jiān)硬頂板預(yù)裂爆破弱化機(jī)理研究[D];中國(guó)礦業(yè)大學(xué);2015年
4 宋國(guó)輝;堅(jiān)硬頂板跨上山開(kāi)采技術(shù)研究[D];安徽建筑大學(xué);2015年
5 劉一杰;祁東礦8_222堅(jiān)硬頂板工作面礦壓規(guī)律與控制[D];安徽理工大學(xué);2016年
6 關(guān)瑞斌;堅(jiān)硬頂板水壓力作用機(jī)理研究[D];西安科技大學(xué);2008年
7 王開(kāi);普采工作面堅(jiān)硬頂板控制及其研究[D];太原理工大學(xué);2006年
8 譚誠(chéng);煤層巨厚堅(jiān)硬頂板超前深孔爆破強(qiáng)制放頂技術(shù)研究[D];安徽理工大學(xué);2011年
9 王銀濤;堅(jiān)硬頂板深孔預(yù)裂爆破技術(shù)研究及應(yīng)用[D];太原理工大學(xué);2015年
10 李德生;綜采面堅(jiān)硬頂板套筒致裂法強(qiáng)制放頂模型實(shí)驗(yàn)研究[D];安徽理工大學(xué);2013年
本文編號(hào):1807326
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1807326.html