天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 礦業(yè)工程論文 >

基于統(tǒng)一強(qiáng)度理論的TBM斜井圍巖彈塑性解及試驗(yàn)研究

發(fā)布時間:2018-04-22 21:09

  本文選題:TBM斜井 + 統(tǒng)一強(qiáng)度理論; 參考:《中國礦業(yè)大學(xué)(北京)》2017年博士論文


【摘要】:近年來,隨著煤礦開采技術(shù)的發(fā)展,礦井開采深度日益增大,煤礦產(chǎn)能不斷提高,開采過程中遇到的各種問題逐漸增多,斜井開拓逐漸成為提高礦井產(chǎn)能的主要提升方式;TBM施工以其高效、優(yōu)質(zhì)、安全等優(yōu)點(diǎn)逐漸成為斜井建設(shè)的重要手段。進(jìn)行長距離、大埋深TBM斜井施工是我國煤炭建設(shè)中的一大挑戰(zhàn),施工過程中會遇到多種不可預(yù)測的問題,對長距離斜井開挖后圍巖穩(wěn)定性進(jìn)行研究,對工程安全具有重要意義,但現(xiàn)有相關(guān)研究較少,是目前亟待解決的問題。本文針對TBM斜井建設(shè)中遇到的大坡度、大埋深、穿越復(fù)雜地層等問題,以神華新街能源公司臺格廟礦區(qū)TBM斜井工程為依托,采用理論、數(shù)值模擬和模型試驗(yàn)相結(jié)合的方法,對襯砌-圍巖相互作用下的TBM斜井圍巖和襯砌力學(xué)特性的變化規(guī)律進(jìn)行系統(tǒng)研究;穿越富水地層時,需考慮地下水的滲流作用,文中對滲流影響下斜井圍巖進(jìn)行了力學(xué)分析和彈塑性理論推導(dǎo)。主要進(jìn)行了以下工作:(1)基于統(tǒng)一強(qiáng)度理論對TBM斜井圍巖進(jìn)行彈塑性理論求解結(jié)合坐標(biāo)轉(zhuǎn)換原理,建立TBM斜井橫斷面內(nèi)彈塑性力學(xué)分析模型;基于統(tǒng)一強(qiáng)度理論推導(dǎo)出兩向非等壓應(yīng)力場中圍巖塑性區(qū)半徑、圍巖應(yīng)力及位移的解析計(jì)算式。參考神華新街能源公司臺格廟礦區(qū)TBM斜井工程的實(shí)際勘察資料,進(jìn)行計(jì)算和參數(shù)分析,深入研究中間主應(yīng)力影響參數(shù)、斜井傾角、原巖側(cè)壓力系數(shù)和襯砌與圍巖彈性模量比等因素對斜井橫斷面內(nèi)圍巖塑性區(qū)半徑、彈塑性區(qū)應(yīng)力及塑性區(qū)徑向位移的影響規(guī)律。計(jì)算結(jié)果表明考慮中間主應(yīng)力作用時,圍巖自穩(wěn)能力增強(qiáng);圍巖側(cè)壓力系數(shù)、斜井傾角和襯砌與圍巖的彈性模量比均會對圍巖塑性區(qū)范圍及圍巖應(yīng)力、位移產(chǎn)生不同程度的影響;襯砌與圍巖的彈性模量比越大,襯砌支護(hù)力也越大。研究結(jié)果為類似條件下的TBM斜井施工及安全性評價提供了理論依據(jù),具有一定的工程參考意義。(2)考慮滲流影響的TBM斜井圍巖彈塑性解對TBM斜井圍巖的應(yīng)力場和滲流場進(jìn)行耦合分析,建立斜井橫斷面內(nèi)彈塑性力學(xué)分析模型;基于統(tǒng)一強(qiáng)度理論和非關(guān)聯(lián)流動法則推導(dǎo)出考慮滲流和剪脹作用的TBM斜井圍巖彈塑性解,深入研究滲流作用和剪脹角對塑性區(qū)半徑和圍巖應(yīng)力、位移的影響規(guī)律。與無滲流影響的計(jì)算結(jié)果進(jìn)行對比,結(jié)果表明地下水的滲流作用對圍巖力學(xué)特性的影響不可忽略;剪脹角對圍巖塑性區(qū)徑向位移有顯著影響,對塑性區(qū)半徑的影響相對較小,對圍巖應(yīng)力的影響不明顯。(3)TBM斜井圍巖應(yīng)力和位移變化的數(shù)值模擬計(jì)算采用FLAC3D計(jì)算軟件對不同埋深下斜井襯砌和圍巖進(jìn)行模擬計(jì)算,得到側(cè)壓系數(shù)、傾角、襯砌-圍巖彈模比和埋深對豎直斷面內(nèi)圍巖塑性區(qū)范圍、應(yīng)力和位移的變化規(guī)律。對計(jì)算模型進(jìn)行切片處理,得到斜井橫斷面的應(yīng)力、位移分布規(guī)律,并將數(shù)值計(jì)算結(jié)果與理論計(jì)算結(jié)果進(jìn)行對比分析,結(jié)果表明兩者所得結(jié)論高度一致。(4)斜井圍巖位移和襯砌內(nèi)力變化的模型試驗(yàn)研究以頂部逐級加載的方式來模擬斜井埋深的變化,通過大型室內(nèi)相似模型試驗(yàn),對不同荷載條件下襯砌管片內(nèi)力和圍巖徑向位移的變化進(jìn)行研究,得到斜井圍巖徑向位移、管片結(jié)構(gòu)不同位置處內(nèi)力隨著豎向加載值的變化規(guī)律。采用不同材料制作襯砌管片結(jié)構(gòu)進(jìn)行模型試驗(yàn),得到不同材料管片結(jié)構(gòu)對圍巖位移的影響及其自身內(nèi)力的變化情況;將試驗(yàn)結(jié)果與文中的理論計(jì)算結(jié)果進(jìn)行對比分析和驗(yàn)證。結(jié)果顯示,隨著豎向荷載值的增大,圍巖徑向位移逐漸增大,且豎直方向圍巖的位移明顯大于水平方向圍巖的位移;管片軸力和彎矩同樣隨著荷載的增大而增大。管片中各處軸力均為壓應(yīng)力,且拱腰處軸力最大,而頂部軸力最小;管片頂部和底部為正彎矩,拱腰處為負(fù)彎矩。將數(shù)值計(jì)算所得襯砌內(nèi)力值與試驗(yàn)測得結(jié)果進(jìn)行對比,二者所得結(jié)論一致。通過分析不同位置處管片內(nèi)力值,發(fā)現(xiàn)管片接頭位置對其內(nèi)力的影響不顯著。實(shí)際工程中應(yīng)根據(jù)斜井埋深的不斷變化,適當(dāng)調(diào)整管片結(jié)構(gòu)的設(shè)計(jì)強(qiáng)度和剛度,以滿足工程需要。
[Abstract]:In recent years, with the development of coal mining technology, the depth of mine mining is increasing, the productivity of the coal mine is increasing, and the problems encountered in the mining process are increasing gradually. The slope opening gradually becomes the main way to raise the productivity of the mine, and the TBM construction has gradually become an important means of the construction of the inclined shaft with its advantages of high efficiency, high quality and safety. The construction of long distance and deep buried TBM inclined shaft is a big challenge in China's coal construction. There will be many unpredictable problems in the construction process. It is of great significance to study the stability of the surrounding rock after the long distance inclined shaft excavation, but the existing related research is less. This paper is a problem to be solved at present. This paper is aimed at TBM oblique. In the construction of well, large slope, large burial depth, cross complex stratum and so on, based on the TBM slope project of the Tai GG Temple mining area, Huaxin energy company, Shen Huaxin energy company, with the method of combining the theory, numerical simulation and model test, the change law of the mechanical characteristics of the perinas and lining of the TBM inclined shaft under the interaction of lining and surrounding rock is systematically studied. When crossing the rich water stratum, the seepage action of groundwater should be considered. In this paper, the mechanical analysis and elastoplastic theory of the surrounding rock of the inclined well under the influence of seepage are carried out. The following work is done mainly: (1) based on the unified strength theory, the elastoplastic theory of the surrounding rock of the TBM inclined well is solved with the principle of coordinate transformation, and the elastic-plastic in the cross section of the TBM inclined shaft is established. Based on the unified strength theory, the analytical formula of the plastic zone radius of the surrounding rock and the stress and displacement of the surrounding rock in the two non isobaric stress field is derived. The actual survey data of the TBM slope engineering of the Shenhua New Street energy company Tai Ge Temple mining area is calculated and analyzed, and the influence parameters of the intermediate principal stress are deeply studied, and the inclined well is studied. The influence of the angle, the pressure coefficient of the original rock side and the ratio of the elastic modulus of the lining and the surrounding rock to the plastic zone radius of the surrounding rock, the stress of the elastic plastic zone and the radial displacement of the plastic zone in the cross section of the inclined shaft. The results show that the stability of the surrounding rock is enhanced when the intermediate principal stress is taken into consideration, the side pressure coefficient of the surrounding rock, the inclination of the inclined shaft and the lining and the surrounding rock The elastic modulus ratio will affect the plastic zone range of surrounding rock and the stress and displacement of surrounding rock, and the greater the modulus of elastic modulus of the lining and the surrounding rock, the greater the lining support force. The research results provide a theoretical basis for the construction and safety evaluation of TBM inclined well under similar conditions, which has certain engineering reference significance. (2) consideration of seepage. The Elastoplastic Solution of the surrounding rock of the TBM inclined well is coupled to the stress field and the seepage field of the surrounding rock of the TBM inclined shaft, and the elastoplastic mechanical analysis model in the cross section of the inclined shaft is established. Based on the unified strength theory and the unrelated flow rule, the Elastoplastic Solution of the perinas in the TBM inclined well considering the seepage and dilatancy effects is derived, and the seepage action and shear are deeply studied. The influence of the expansion angle on the plastic zone radius and the stress and displacement of the surrounding rock is compared with the calculation results without seepage. The results show that the influence of seepage on the mechanical properties of the surrounding rock can not be ignored; the dilatancy angle has a significant influence on the radial displacement of the plastic zone of the surrounding rock, and the effect on the radius of the plastic zone is relatively small, and the stress on the surrounding rock The influence is not obvious. (3) the numerical simulation calculation of the stress and displacement of the surrounding rock of TBM inclined shaft is calculated by FLAC3D software to simulate the lining and surrounding rock of the inclined shaft under different buried depth, and the change law of the lateral pressure coefficient, the dip angle, the elastic modulus ratio of the lining wall rock and the depth to the plastic zone range of the surrounding rock in the vertical section, the stress and displacement of the surrounding rock are calculated. The model is sliced to get the stress and displacement distribution of the cross section of the inclined shaft, and the results of numerical calculation are compared with the theoretical calculation results. The results show that the results are highly consistent. (4) the model test of the change of the displacement of the surrounding rock and the internal force of the lining of the inclined well is used to simulate the buried depth of the inclined shaft by the way of the top step by step. The changes in the internal force of lining tube and the radial displacement of the surrounding rock under different load conditions are studied by a large indoor similar model test. The radial displacement of the surrounding rock of the inclined shaft and the variation law of the internal force with the vertical loading value at different position of the pipe structure are obtained. The influence of the structure of different materials on the displacement of surrounding rock and the change of its internal force, the experimental results are compared with the theoretical calculation results in the paper. The results show that the radial displacement of the surrounding rock increases with the increase of the vertical load value, and the displacement of the vertical surrounding rock is obviously larger than the displacement of the surrounding rock. The axial force and bending moment of the pipe also increase with the increase of the load. The axial force in each section of the pipe is all pressure stress, and the axial force of the arch waist is the largest, and the top axis force is the least; the top and bottom of the tube are positive bending moment, and the arch waist is negative bending moment. The results of the inner force of the lining of the numerical calculation are compared with the test results, the conclusions of the two are in the same conclusion. Through the analysis of the internal force values at different positions at different positions, it is found that the effect of the position of the joint on the internal force is not significant. In practical engineering, the design strength and stiffness should be adjusted according to the constant change of the buried depth of the inclined shaft, so as to meet the needs of the engineering.

【學(xué)位授予單位】:中國礦業(yè)大學(xué)(北京)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TD26

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 鄧尚平,傅鶴林;板裂介質(zhì)圍巖中的隧道襯砌與圍巖相互作用機(jī)理[J];采礦技術(shù);2003年01期

2 楊治林;板裂介質(zhì)圍巖的流變屈曲研究[J];西安科技大學(xué)學(xué)報(bào);2004年03期

3 姜云,李永林,李天斌,王蘭生;隧道工程圍巖大變形類型與機(jī)制研究[J];地質(zhì)災(zāi)害與環(huán)境保護(hù);2004年04期

4 劉高,王小春,聶德新;金川礦區(qū)地下巷道圍巖應(yīng)力場特征及演化機(jī)制[J];地質(zhì)災(zāi)害與環(huán)境保護(hù);2002年04期

5 張凱,王希良;地下工程軟弱巖體圍巖結(jié)構(gòu)的地震探測技術(shù)[J];河北煤炭;2004年04期

6 葛家良,陸士良;圍巖結(jié)構(gòu)特性對注漿的影響[J];礦山壓力與頂板管理;1997年01期

7 張頂立,錢鳴高;綜放工作面圍巖結(jié)構(gòu)分析[J];巖石力學(xué)與工程學(xué)報(bào);1997年04期

8 楊利平;張鳳杰;;深部軟巖巷道支護(hù)圍巖結(jié)構(gòu)的變化規(guī)律研究[J];煤炭技術(shù);2014年06期

9 徐望國;陳曉斌;張家生;;破碎帶圍巖參數(shù)確定有限元反演試驗(yàn)研究[J];塑性工程學(xué)報(bào);2007年05期

10 郭秉超;張坤;曹建濤;;三維可加載條件下工作面圍巖局部變形規(guī)律[J];煤炭工程;2010年02期

相關(guān)會議論文 前10條

1 黃運(yùn)飛;;關(guān)于圍巖弱化的幾個問題[A];第四屆全國工程地質(zhì)大會論文選集(二)[C];1992年

2 姜云;;隧道工程圍巖大變形類型與機(jī)制研究[A];中國公路學(xué)會2004年學(xué)術(shù)年會論文集[C];2004年

3 曾元一;翁世梁;朱正玨;;坪林主隧道大斷面TBM之施工規(guī)劃[A];海峽兩岸土力學(xué)及基礎(chǔ)工程地工技術(shù)學(xué)術(shù)研討會論文集[C];1994年

4 曾元一;翁世梁;朱正玨;;全斷面隧道鉆掘機(jī)(TBM)于軟弱巖層之施工[A];海峽兩岸土力學(xué)及基礎(chǔ)工程地工技術(shù)學(xué)術(shù)研討會論文集[C];1994年

5 張延慶;;鉆開油層井眼圍巖結(jié)構(gòu)模擬研究[A];第三屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集(下)[C];1994年

6 王士民;朱合華;蔡永昌;李曉軍;;曙光反分析程序及其在工程中的應(yīng)用[A];全國巖土工程反分析學(xué)術(shù)研討會暨黃巖石窟(錦繡黃巖)巖石力學(xué)問題討論會文集[C];2006年

7 祁海燕;;TBM鋼筋排架安裝系統(tǒng)應(yīng)用[A];水與水技術(shù)(第4輯)[C];2014年

8 吳德潤;趙國光;唐洪樂;;TBM頂?shù)讖?fù)吹技術(shù)在梅山煉鋼廠的運(yùn)用[A];中國金屬學(xué)會2003中國鋼鐵年會論文集(3)[C];2003年

9 趙均海;顧強(qiáng);;統(tǒng)一強(qiáng)度理論下的有限元程序及工程應(yīng)用[A];計(jì)算機(jī)在土木工程中的應(yīng)用——第十屆全國工程設(shè)計(jì)計(jì)算機(jī)應(yīng)用學(xué)術(shù)會議論文集[C];2000年

10 黃平華;;盾構(gòu)及TBM設(shè)備監(jiān)造的實(shí)踐與探索[A];中國中鐵隧道集團(tuán)2007年水底隧道專題技術(shù)交流大會論文集[C];2007年

相關(guān)重要報(bào)紙文章 前5條

1 楊三柱 袁煒剛;做專做優(yōu)隧道主業(yè) 叫響叫亮TBM品牌[N];中國鐵道建筑報(bào);2012年

2 記者李仕兵 通訊員葉廷勇 趙曉莉;采用TBM實(shí)施煤礦長斜井建設(shè)開先河[N];中國鐵道建筑報(bào);2013年

3 商報(bào)首席記者 劉敏;軌道建設(shè)提速4倍 巨無霸TBM挖出“重慶速度”[N];重慶商報(bào);2012年

4 通訊員 資誼;煤炭行業(yè)首次TBM工法 設(shè)計(jì)通過專家論證[N];中國鐵道建筑報(bào);2011年

5 王佳 記者 王杰學(xué);青藏高原首臺TBM成功始發(fā)[N];西藏日報(bào)(漢);2013年

相關(guān)博士學(xué)位論文 前10條

1 劉璐璐;基于統(tǒng)一強(qiáng)度理論的TBM斜井圍巖彈塑性解及試驗(yàn)研究[D];中國礦業(yè)大學(xué)(北京);2017年

2 徐昌茂;基于圍巖穩(wěn)定性與超前地質(zhì)預(yù)報(bào)的高鐵隧道鉆爆開挖工法轉(zhuǎn)換條件研究[D];中國地質(zhì)大學(xué);2015年

3 郝杰;高地應(yīng)力區(qū)隧洞施工期圍巖質(zhì)量評價及穩(wěn)定性研究[D];新疆農(nóng)業(yè)大學(xué);2015年

4 于富才;隧道支護(hù)與圍巖作用體系的力學(xué)特性研究[D];北京交通大學(xué);2017年

5 房倩;高速鐵路隧道支護(hù)與圍巖作用關(guān)系研究[D];北京交通大學(xué);2010年

6 劉大剛;公路隧道施工階段巖體圍巖亞級分級研究[D];西南交通大學(xué);2007年

7 熊曉暉;富水深埋TBM斜井圍巖卸荷特性研究[D];重慶大學(xué);2015年

8 姜云;公路隧道圍巖大變形的預(yù)測預(yù)報(bào)與對策研究[D];成都理工大學(xué);2004年

9 李英杰;軟弱深埋隧道圍巖結(jié)構(gòu)特性及支護(hù)荷載確定方法研究[D];北京交通大學(xué);2012年

10 張哲;隧(巷)道開挖擾動區(qū)(EDZ)形成過程及機(jī)理的研究[D];東北大學(xué);2007年

相關(guān)碩士學(xué)位論文 前10條

1 覃媛;圍巖與襯砌相互作用的隧洞力學(xué)分析[D];華北電力大學(xué);2015年

2 徐偉;武深高速公路小方山隧道施工圍巖—結(jié)構(gòu)穩(wěn)定性分析研究[D];重慶交通大學(xué);2015年

3 蒲鷗;淺埋偏壓隧道的圍巖自穩(wěn)性研究及工程應(yīng)用[D];廣西大學(xué);2017年

4 龔書賢;層狀圍巖隧道力學(xué)特性及穩(wěn)定性研究[D];重慶大學(xué);2011年

5 劉彪;巖質(zhì)圍巖隧道的穩(wěn)定性研究[D];西南交通大學(xué);2008年

6 唐輝湘;散體圍巖淺埋隧道的開挖與支護(hù)技術(shù)研究[D];長沙理工大學(xué);2011年

7 曹君陟;圍巖動載穩(wěn)定性的數(shù)值模擬研究[D];山東科技大學(xué);2005年

8 金昊;馬爾康隧道圍巖變形與穩(wěn)定性研究[D];西華大學(xué);2012年

9 紀(jì)珊珊;長大隧道開敞式TBM掘進(jìn)性能及刀具損耗規(guī)律研究[D];石家莊鐵道大學(xué);2015年

10 李榮鑫;TBM機(jī)頭架焊接數(shù)值模擬與接頭金相組織分析[D];鄭州大學(xué);2016年

,

本文編號:1788944

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/kuangye/1788944.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a877a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com