敦化市東山硅藻土礦區(qū)水文地質(zhì)特征研究及涌水量預(yù)測
本文選題:東山硅藻土礦區(qū) + GMS軟件; 參考:《成都理工大學(xué)》2017年碩士論文
【摘要】:東山硅藻土礦區(qū)地處敦化-密山斷裂帶控制的新生代斷陷盆地,盆地內(nèi)為新近系中新統(tǒng)土門子組(N_1t)地層,巖性主要由砂巖、硅藻土、含硅藻粘土及玄武巖組成。硅藻土礦主要賦存于N_1t地層,該地層固結(jié)程度較差,地質(zhì)和水文地質(zhì)條件復(fù)雜,富水性較好,礦層開采難度較大,準確合理的預(yù)測涌水量為未來該礦區(qū)礦山安全開采、排水方案設(shè)計等提供理論依據(jù),對指導(dǎo)同類硅藻土礦山開采具有重要的科學(xué)意義。論文以水文地質(zhì)學(xué)、工程地質(zhì)學(xué)、地下水動力學(xué)等理論為基礎(chǔ),綜合應(yīng)用水文地質(zhì)調(diào)查、抽水試驗以及室內(nèi)試驗等技術(shù)手段,并采用“大井法”、“水均衡法”和“數(shù)值模擬”等方法預(yù)測東山硅藻土礦區(qū)礦坑涌水量。獲得研究成果如下:(1)硅藻土礦層作為隔水層分布于全區(qū),近水平產(chǎn)出,局部與頂板含水層直接接觸。K_1號礦層的主要頂板充水含水層為N_1t~3,含水層厚度大、富水性中等,地下水類型為碎屑巖類裂隙孔隙水;K_2號礦層的主要頂板充水含水層為N_1t~8,含水層厚度分布不均、富水性弱,地下水類型為玄武巖孔洞裂隙水。(2)結(jié)合研究區(qū)水文地質(zhì)特征,構(gòu)建含(隔)水層與礦層垂向空間結(jié)構(gòu)模型分別為Qh~(al)松散巖類含水層+Qp_1j、Qp_3n和N_1t~(10+8)玄武巖含水層+N_1t~7(K_2號礦層)隔水層+N_1t~(6+4)玄武巖含水層+N_1t~3砂巖含水層+N_1t~2(K_1號礦層)隔水層+N_1t~1砂礫巖含水層組合結(jié)構(gòu)。(3)依據(jù)研究區(qū)地質(zhì)、水文地質(zhì)資料建立了三維地質(zhì)模型和水文地質(zhì)概念模型;以地質(zhì)模型和水文地質(zhì)概念模型為基礎(chǔ),建立了能夠描述和反映研究區(qū)地下水流動特征的數(shù)學(xué)模型,再運用GMS中MODFLOW模塊構(gòu)建了研究區(qū)三維地下水數(shù)值模型,隨后運用研究區(qū)35個水位觀測孔數(shù)據(jù)對模型進行穩(wěn)定流識別與校正,最后運用J_(03)和JG_(03)抽水試驗觀測數(shù)據(jù)對模型進行非穩(wěn)定流識別與校正。實際水位觀測值與模型計算水位值擬合較好,表明本次模擬選取的水文參數(shù),邊界條件和源匯項概化都很合理,所建模型可靠,可用于礦區(qū)涌水量預(yù)測。(4)基于識別和驗證后的模型,采用GMS中Well(抽水井)模塊在開采區(qū)設(shè)置6口抽水井進行疏降水,預(yù)測雨季礦坑最大涌水量為7800m~3/d;通過“大井法”和“水均衡法”計算出的涌水量分別為8044m~3/d和7714m~3/d,與采用模型預(yù)測的最大涌水量之間差距分別為3.13%和1.10%,三種方法所得結(jié)果較接近,相互印證,進一步的驗證了數(shù)學(xué)模型的可靠性。
[Abstract]:The Dongshan diatomite mine is located in the Cenozoic faulted basin controlled by the Dunhua-Mishan fault zone. The basin is composed of sandstone, diatomite, diatom clay and basalt. The diatomite deposit mainly occurs in Nji 1t formation, which has poor consolidation degree, complex geological and hydrogeological conditions, good water enrichment and difficulty in mining ore bed. The accurate and reasonable prediction of water inflow is the safe mining of the mine in the future. The design of drainage scheme is of great scientific significance for guiding diatomite mining. Based on the theories of hydrogeology, engineering geology, groundwater dynamics and so on, the paper applies the techniques of hydrogeological investigation, pumping test and laboratory test, and adopts "large well method". The methods of water balance and numerical simulation are used to predict the water inflow of Dongshan diatomite mine. The results of the study are as follows: (1) diatomite ore beds are distributed in the whole area as a water-separating layer, producing near level. The main roof filling aquifer of the substratum. K1 is directly in contact with the roof aquifer. The main roof filling aquifer is N1t / 3, and the aquifer is thick and medium water-rich. The groundwater type is the main roof water-filled aquifer of clastic rock fissures and pore water, the aquifer is N1t ~ (8), the thickness of aquifer is uneven, the water-rich is weak, and the type of groundwater is basalt pore and fissure water. 2) combined with the hydrogeological characteristics of the study area. The model of vertical spatial structure of water-bearing (separated) aquifer and ore bed is Qhlangalao) Qp1j-Qp3n and N_1t~(10 _ 8) Qp1J / Qp3n and N_1t~(10 _ 8) basalt aquifer, N_1t~7(K_2) water-isolated layer, N_1t~(6 _ 4) basalt aquifer, N_1t~3 sandstone aquifer, N_1t~2(K_1 ore deposit, respectively, Qp1J / Qp3n and N_1t~(10 _ 8). N_1t~1 sand gravel aquifer assemblage structure. 3) according to the geology of the study area, Based on the geological model and hydrogeological conceptual model, a mathematical model which can describe and reflect the characteristics of groundwater flow in the study area is established. The 3D groundwater numerical model of the study area is constructed by using the MODFLOW module in GMS, and then the steady flow is identified and corrected by using the data of 35 water level observation holes in the study area. Finally, the unsteady flow is identified and corrected by using the observation data of the pumping test. The actual water level observed value fits well with the calculated water level value of the model, which indicates that the hydrological parameters, boundary conditions and source and sink terms selected by this simulation are all reasonable, and the model is reliable. Based on the identified and verified model, well (pumping well) module in GMS is used to set up 6 pumping wells in the mining area for thinning and dewatering. The predicted maximum inflow of mine in rainy season is 7800mg / d, and the water inflow calculated by "large well method" and "water balance method" is 8044m~3/d and 7714mg / d, respectively, and the difference between the maximum water inflow predicted by the model and that predicted by the model is 3.13% and 1.10%, respectively. The results obtained by the three methods are close to each other. Mutual verification further verifies the reliability of the mathematical model.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD742;P641.46
【參考文獻】
相關(guān)期刊論文 前10條
1 王紅梅;黃勇;;長汀礦區(qū)礦坑涌水量模糊水文地質(zhì)比擬法預(yù)測[J];金屬礦山;2017年03期
2 孫東哲;徐世光;吳靜;;GMS在礦井涌水量中的運用[J];價值工程;2017年07期
3 李生紅;歐光照;;貴州省某鉬鎳礦礦區(qū)水文地質(zhì)特征分析及礦坑涌水量預(yù)測[J];西部探礦工程;2017年02期
4 鄭麗媛;;R/S分析方法在礦井涌水量預(yù)測中的應(yīng)用[J];山西建筑;2017年04期
5 趙鐵峰;虞潔;;河南某鉛礦礦床水文地質(zhì)條件分析及礦坑涌水量預(yù)測[J];地下水;2016年04期
6 王國瑞;馮書順;翟延亮;張維;蘇本振;;基于Visual Modflow的礦井涌水量數(shù)值模擬精細預(yù)測研究[J];煤炭技術(shù);2015年08期
7 李彩梅;楊永剛;秦作棟;鄒松兵;李晉昌;;基于FEFLOW和GIS技術(shù)的礦區(qū)地下水動態(tài)模擬及預(yù)測[J];干旱區(qū)地理;2015年02期
8 張子祥;;甘肅核桃峪煤礦礦井涌水量的計算與分析[J];中國煤炭地質(zhì);2015年02期
9 丁瑞;;敦化市高松樹硅藻土礦床地質(zhì)特征及成因[J];中國非金屬礦工業(yè)導(dǎo)刊;2014年04期
10 鄭琳;趙修軍;姜敏德;高勇;秦旭龍;;復(fù)雜水文地質(zhì)條件下礦井涌水量預(yù)測研究[J];煤炭工程;2014年04期
相關(guān)博士學(xué)位論文 前2條
1 許珂;臺格廟礦區(qū)頂板涌(突)水危險性評價與礦井涌水量預(yù)測[D];中國礦業(yè)大學(xué)(北京);2016年
2 劉圣;馬海盆地荒漠綠洲區(qū)生態(tài)地下水位對人類活動響應(yīng)的研究[D];中國地質(zhì)大學(xué)(北京);2014年
相關(guān)碩士學(xué)位論文 前10條
1 馬凱;檸條塔煤礦S1224工作面涌水量動態(tài)數(shù)值模擬研究[D];西安科技大學(xué);2016年
2 劉汝學(xué);紗嶺金礦涌水量分析與預(yù)測[D];山東農(nóng)業(yè)大學(xué);2016年
3 楊恩祈;云南省普洱市蘿卜山鉛鋅礦區(qū)水文地質(zhì)條件及礦坑涌水量預(yù)測研究[D];昆明理工大學(xué);2016年
4 柴琳琳;內(nèi)蒙集寧大理巖地下水數(shù)值模擬[D];石家莊經(jīng)濟學(xué)院;2015年
5 蔡魏瑞;寧夏某煤礦三維地質(zhì)建模及礦坑涌水量預(yù)測[D];石家莊經(jīng)濟學(xué)院;2014年
6 康英;檸條塔礦井水文地質(zhì)特征研究[D];西安科技大學(xué);2014年
7 耿建康;姜梨園鐵礦井下水文地質(zhì)條件綜合研究[D];合肥工業(yè)大學(xué);2014年
8 劉振華;伊敏河?xùn)|煤田水文地質(zhì)特征研究[D];河北工程大學(xué);2013年
9 趙彥寧;基于GIS的吉林省敦化市地質(zhì)災(zāi)害易發(fā)性區(qū)劃方法研究[D];吉林大學(xué);2013年
10 龐雅婕;多環(huán)芳烴在垃圾填埋場孔隙介質(zhì)中遷移規(guī)律的研究[D];中國地質(zhì)科學(xué)院;2013年
,本文編號:1776582
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1776582.html