深孔爆破預(yù)裂頂板及其對綜放面初采期礦壓與瓦斯影響規(guī)律的研究
本文選題:堅(jiān)硬頂板 + 深孔爆破; 參考:《太原理工大學(xué)》2017年碩士論文
【摘要】:我國煤炭資源儲(chǔ)量豐富,堅(jiān)硬頂板煤層較多。厚硬頂板的存在嚴(yán)重威脅采煤工作面的安全生產(chǎn),特別是在初采期間,頂板完整性較好,在短期內(nèi)不會(huì)自行垮落,使得初次來壓步距加大。一旦頂板大面積垮落,采空區(qū)瓦斯瞬間涌出,極易造成頂板和瓦斯事故,輕則設(shè)備損壞,重則人員傷亡。因此,使堅(jiān)硬頂板提前垮落,從而避免頂板事故及瓦斯事故的發(fā)生得到了人們的高度重視。本文研究了采用深孔爆破技術(shù)對堅(jiān)硬頂板進(jìn)行預(yù)裂使其提前垮落的理論與技術(shù),對深孔爆破巖石破碎基礎(chǔ)理論進(jìn)行了探討,利用ANSYS/LSDYNA和UDEC軟件分別對巖石爆破裂隙擴(kuò)展和頂板初次斷裂步距進(jìn)行了模擬分析,并以大陽煤礦3404綜放工作面為工程背景,設(shè)計(jì)和實(shí)施了爆破方案,并對深孔爆破預(yù)裂頂板改善綜放面初采期頂板初次來壓和瓦斯治理效果進(jìn)行了實(shí)測分析。得出了以下主要結(jié)論:(1)確定了巖石爆破的相關(guān)參數(shù)。通過理論計(jì)算,得出巖石爆破形成的破碎區(qū)半徑為38.5cm,裂隙區(qū)半徑為195cm。利用ANSYS/LS-DYNA3D軟件對巖石爆破后的裂隙擴(kuò)展進(jìn)行了數(shù)值模擬,得出巖石爆破形成粉碎區(qū)半徑為39.5cm,裂隙區(qū)半徑約為185cm。數(shù)值模擬結(jié)果同理論計(jì)算結(jié)果基本一致。(2)深孔爆破使頂板由固支梁結(jié)構(gòu)變?yōu)閼冶哿航Y(jié)構(gòu),使頂板初次垮落步距減小。利用UDEC數(shù)值軟件,對頂板在預(yù)裂條件下和非預(yù)裂條件下的初次垮落步距進(jìn)行了模擬,結(jié)果表明:預(yù)裂爆破使頂煤的初次垮落步距減小了6.0m,直接頂初次垮落步距減小了9.6m,老頂初次來壓步距減小了12.0m。(3)同一鉆孔爆破前后進(jìn)行窺視,爆破前鉆孔壁比較完整,爆破后鉆孔壁出現(xiàn)了較多的裂縫,證明爆破對頂板巖石起到了有效的預(yù)裂作用。(4)現(xiàn)場實(shí)測表明,與未進(jìn)行預(yù)裂措施的3303工作面相比,3404綜放面頂煤初次垮落步距和老頂初次來壓步距分別提前了8m和11m;初次來壓期間支架動(dòng)載系數(shù)最小1.03、最大1.26,平均1.10。說明采取頂板預(yù)裂后,頂板初次來壓期間,采場支護(hù)是安全的。(5)深孔預(yù)裂爆破能有效預(yù)防工作面初采期間瓦斯超限問題。初采前對頂板進(jìn)行爆破預(yù)裂,使頂煤煤巖體內(nèi)原生裂隙擴(kuò)張,并產(chǎn)生新的裂隙,破壞了頂板的完整性,明顯減小了頂煤的初次垮落和老頂?shù)某醮蝸韷翰骄?減小了采空區(qū)的懸頂面積,使頂層輔助回風(fēng)巷提前發(fā)揮作用,有利于工作面通風(fēng)管理,降低了工作面和上隅角瓦斯?jié)舛?確保了初采期間工作面的安全生產(chǎn)。(6)對高位鉆孔瓦斯抽采濃度和抽采純量的變化進(jìn)行了實(shí)測分析,結(jié)果表明:高位鉆孔瓦斯抽采濃度和抽采純量的變化與頂板活動(dòng)規(guī)律一致,說明預(yù)裂頂板使頂板巖層產(chǎn)生裂縫,并且老頂巖層提前斷裂來壓,導(dǎo)致大量瓦斯被高位鉆孔抽出是初采期間工作面和上隅角瓦斯?jié)舛冉档偷脑蛑弧?br/>[Abstract]:China is rich in coal resources, and there are more hard roof coal seams. The existence of thick and hard roof seriously threatens the safety production of coal mining face, especially during the initial mining period, the roof integrity is good, and it will not collapse itself in the short term, which makes the initial pressure step increase. Once the roof collapses in a large area gas gushes out of the goaf easily causing roof and gas accidents light equipment damage and heavy casualties. Therefore, people attach great importance to the prevention of roof accidents and gas accidents by making hard roof collapse ahead of time. In this paper, the theory and technology of using deep-hole blasting technology to pre-crack hard roof to make it collapse ahead of time are studied. The basic theory of rock fragmentation in deep-hole blasting is discussed. ANSYS/LSDYNA and UDEC software are used to simulate the crack expansion of rock blasting and the initial breakage distance of roof, and the blasting scheme is designed and implemented with the 3404 fully mechanized caving face of Danyang Coal Mine as the engineering background. The effect of pre-split roof by deep hole blasting on the initial roof pressure and gas control in the initial mining stage of fully mechanized caving face is analyzed. The main conclusions are as follows: 1) the relevant parameters of rock blasting are determined. By theoretical calculation, the radius of fracture zone and fracture zone of rock blasting are 38.5 cm and 195 cm respectively. The crack propagation after rock blasting is simulated by ANSYS/LS-DYNA3D software. It is concluded that the radius of rock blasting is 39.5 cm and the radius of crack area is about 185 cm. The numerical simulation results are in good agreement with the theoretical results.) Deep hole blasting changes the roof structure from a fixed beam structure to a cantilever beam structure and reduces the initial collapse step distance of the roof. Using UDEC software, the initial collapse distance of roof under pre-cracking and non-pre-cracking conditions is simulated. The results show that the first caving distance of top coal is reduced by 6.0 m, the first collapse distance of direct roof is reduced by 9.6 m, and the initial pressure step of main roof is decreased by 12.0 m.f3) the borehole wall is relatively complete before and after blasting. There are many cracks in the borehole wall after blasting, which proves that blasting has an effective pre-splitting effect on roof rock. Compared with the 3303 working face without pre-splitting measures, the first collapse distance of top coal and the first starting step of main roof of No. 3404 top-coal caving face were 8m and 11m earlier, respectively, and the minimum dynamic load coefficient of the support during the initial loading period was 1.03m, the maximum 1.26m, and the average 1.10m. It is shown that after pre-splitting of roof, the stope support is safe during the initial pressure period of roof, and the deep-hole pre-splitting blasting can effectively prevent the gas over-limit during the initial mining of the working face. Before the initial mining, the roof was pre-cracked by blasting, which made the primary cracks in the top coal and rock expand, and produced new cracks, which destroyed the integrity of the roof, and obviously reduced the initial collapse of the top coal and the initial pressure step of the main roof. The suspended roof area of the goaf is reduced, and the auxiliary return air roadway of the top floor is brought into play in advance, which is beneficial to the ventilation management of the working face and the gas concentration in the working face and the upper corner. The change of gas extraction concentration and extraction scalar quantity in high borehole is measured and analyzed. The results show that the change of gas extraction concentration and scalar quantity in high borehole is consistent with the law of roof movement. It is shown that the pre-crack roof makes the roof rock layer crack and the main roof rock strata break and pressure ahead of time, which results in a large amount of gas being extracted from the high hole is one of the reasons for the decrease of the gas concentration in the working face and the upper corner during the initial mining.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD712;TD235.33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡建華;雷濤;周科平;陳慶發(fā);;充填環(huán)境下預(yù)裂縫的爆破動(dòng)力響應(yīng)分析[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年06期
2 潘長春;;預(yù)裂縫對爆破振動(dòng)頻率影響的試驗(yàn)研究[J];資源環(huán)境與工程;2014年02期
3 蔣桐,郭光林,黃海燕;整體式碾壓混凝土重力壩預(yù)裂縫的效應(yīng)與分析[J];南京工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年05期
4 盧開榮;;武-201型水膠炸藥在我礦預(yù)裂爆的破中試用[J];冶金安全;1982年01期
5 劉際飛;璩世杰;;預(yù)裂爆破中節(jié)理走向角度對預(yù)裂縫貫通性的影響[J];金屬礦山;2014年04期
6 唐小軍;;預(yù)裂縫減震效果數(shù)值模擬與工程結(jié)合[J];礦業(yè)快報(bào);2007年05期
7 伊?xí)杂?王占清;;控制預(yù)裂和后爆孔的空孔作用[J];黃金;2007年11期
8 婁建武,龍?jiān)?預(yù)裂縫減震作用下爆破地震波的頻譜特征分析[J];爆破;2005年03期
9 秦健飛;;聚能預(yù)裂(光面)爆破技術(shù)[J];工程爆破;2007年02期
10 邵鵬,姜濤,張勇;巖巷預(yù)裂成縫機(jī)理的理論探討[J];爆破器材;1999年06期
相關(guān)會(huì)議論文 前2條
1 于彥洲;郭坤;謝錕;;三峽工程左岸6~10號(hào)廠壩高邊坡預(yù)裂面的技術(shù)控制[A];光面預(yù)裂爆破論文匯編[C];2007年
2 郭堯;孟海利;戚妍娟;薛里;;預(yù)裂縫對爆破地震波傳播影響的機(jī)理研究[A];2010振動(dòng)與噪聲測試峰會(huì)論文集[C];2010年
相關(guān)重要報(bào)紙文章 前1條
1 ;大力推廣鐵路路塹邊坡光面(預(yù)裂)爆破開挖技術(shù)[N];人民鐵道;2009年
相關(guān)博士學(xué)位論文 前1條
1 王海東;深部開采低滲透煤層預(yù)裂控制爆破增透機(jī)理研究[D];中國地震局工程力學(xué)研究所;2012年
相關(guān)碩士學(xué)位論文 前8條
1 郝鑫剛;低滲透煤層液態(tài)二氧化碳爆破預(yù)裂測試系統(tǒng)的設(shè)計(jì)與研究[D];中北大學(xué);2016年
2 王幸榮;預(yù)裂縫減振效果研究[D];武漢理工大學(xué);2006年
3 巫雨田;預(yù)裂縫減震效果數(shù)值模擬研究[D];武漢理工大學(xué);2014年
4 李剛;高瓦斯煤層長孔預(yù)裂增透技術(shù)的研究[D];內(nèi)蒙古科技大學(xué);2012年
5 岳彪;小孔徑深淺孔爆破在大采高頂板預(yù)裂中的研究與應(yīng)用[D];太原理工大學(xué);2015年
6 曹攀;基于UDEC煤體深孔預(yù)裂控制爆破的研究[D];安徽理工大學(xué);2014年
7 劉昆鵬;預(yù)裂縫技術(shù)在市政道路工程中的應(yīng)用分析[D];山東大學(xué);2014年
8 齊曉華;水壓致裂煤層裂隙演化規(guī)律研究[D];西安科技大學(xué);2017年
,本文編號(hào):1775260
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1775260.html