爆破動(dòng)載作用下出礦巷道穩(wěn)定性研究
本文選題:爆破震動(dòng) + 穩(wěn)定性。 參考:《江西理工大學(xué)》2016年碩士論文
【摘要】:千家坪釩礦采用水平扇形深孔階段礦房法回采礦石,由于采場(chǎng)爆破施工具有裝藥量大、次數(shù)多、井下空間有限等特點(diǎn),使爆破震動(dòng)對(duì)鄰近巷道圍巖造成損傷顯現(xiàn)的愈發(fā)明顯。尤其是現(xiàn)場(chǎng)部分區(qū)域邊墻已經(jīng)出現(xiàn)裂縫,頂板已有小塊巖石脫落?紤]到掌握爆破震動(dòng)對(duì)巷道圍巖的破壞機(jī)理,即可通過(guò)采取相應(yīng)控爆措施,達(dá)到維護(hù)采場(chǎng)穩(wěn)定的目的。因此,本文結(jié)合礦山生產(chǎn)實(shí)際,以采場(chǎng)實(shí)測(cè)震動(dòng)數(shù)據(jù)為依據(jù),通過(guò)理論分析、回歸分析、FLAC~(3D)數(shù)值計(jì)算等手段,分析深孔爆破震動(dòng)對(duì)鄰近巷道圍巖穩(wěn)定性造成的影響,并結(jié)合現(xiàn)場(chǎng)生產(chǎn)實(shí)際,提出相應(yīng)的控爆措施。本文主要研究成果如下:(1)首先,通過(guò)對(duì)生產(chǎn)工藝流程、爆破參數(shù)設(shè)計(jì)與出礦巷道破壞現(xiàn)狀的調(diào)研,設(shè)計(jì)并實(shí)施+745中段采場(chǎng)爆破震動(dòng)測(cè)試,記錄深孔爆破時(shí)出礦巷道底板處的震動(dòng)速度、持續(xù)時(shí)間、主震頻率等參數(shù)。其次,通過(guò)對(duì)實(shí)測(cè)數(shù)據(jù)進(jìn)行回歸分析,得到爆破震動(dòng)波在該區(qū)域的衰減規(guī)律,為采場(chǎng)爆破參數(shù)優(yōu)化提供依據(jù)。最后,采用HHT方法對(duì)采場(chǎng)某一實(shí)測(cè)信號(hào)分析,發(fā)現(xiàn)其能量主要集中于50Hz以內(nèi),且大多分布于10Hz~20Hz的低頻帶,并與地下建筑物的自振頻率接近,極易引起共振,造成事故,應(yīng)額外注意;同時(shí),也發(fā)現(xiàn)信號(hào)瞬時(shí)能量的分布主要集中于0.2s~0.4s時(shí)段,且微差效果體現(xiàn)不明顯,建議重新確定最大單段起爆藥量和雷管段別,以達(dá)到最好降震效果。(2)動(dòng)載作用下出礦巷道穩(wěn)定性的數(shù)值模擬研究。選取+795中段出礦巷道作為研究對(duì)象,根據(jù)工程實(shí)際建立數(shù)值計(jì)算模型,以實(shí)測(cè)垂向震動(dòng)速度作為動(dòng)荷載輸入波形,分別計(jì)算自重狀態(tài)下與動(dòng)荷載狀態(tài)下巷道圍巖的應(yīng)力場(chǎng)、位移場(chǎng)、塑性區(qū)與速度場(chǎng)的變化規(guī)律。結(jié)果顯示,雖然爆破震動(dòng)對(duì)巷道圍巖(未支護(hù))的位移、應(yīng)力、塑性區(qū)造成的影響較小,但巷道底部較其他區(qū)域變化更明顯,說(shuō)明爆破震動(dòng)對(duì)巷道破壞比較有限,且主要集中于底板與墻腳處;通過(guò)與錨噴支護(hù)后的巷道對(duì)比,發(fā)現(xiàn)錨噴支護(hù)可以進(jìn)一步降低爆破震動(dòng)對(duì)巷道造成的影響;通過(guò)監(jiān)測(cè)巷道四周(除底板)質(zhì)點(diǎn)的應(yīng)力場(chǎng)、位移場(chǎng)、速度場(chǎng)隨時(shí)間的變化規(guī)律,發(fā)現(xiàn)應(yīng)力、速度隨時(shí)間的變化曲線與動(dòng)荷載輸入波形變化大體一致,同時(shí),也發(fā)現(xiàn)巷道墻腳處的應(yīng)力極值變化最大、速度極值變化最大,位移(同一時(shí)刻)變化最大,說(shuō)明爆破震動(dòng)(僅爆源位于正下方時(shí))對(duì)巷道底部影響最大。(3)出礦巷道穩(wěn)定性監(jiān)測(cè)。通過(guò)對(duì)爆破作業(yè)前后巷道變形的監(jiān)測(cè),發(fā)現(xiàn)其變形處于正常情況,與數(shù)值模擬結(jié)果比較接近。但在實(shí)際中,多次累積爆破后,作業(yè)點(diǎn)上方巷道仍會(huì)出現(xiàn)一定程度破壞,且在今后頻繁的回采作業(yè)后,巷道圍巖的損傷會(huì)進(jìn)一步累積,進(jìn)而超過(guò)安全閾值,最終導(dǎo)致巷道失穩(wěn)。因此,巷道掘進(jìn)后,應(yīng)該及時(shí)對(duì)危險(xiǎn)區(qū)域采取支護(hù)措施,并調(diào)整爆破作業(yè)參數(shù),降低爆破震動(dòng)對(duì)巷道的破壞。
[Abstract]:In Qianjiaping Vanadium Mine, the horizontal fan deep hole stage is used for mining ore. Because the stope blasting construction has the characteristics of large charge, many times and limited underground space, the damage caused by blasting vibration to the surrounding rock of adjacent roadway becomes more and more obvious.In particular, cracks have appeared in the side walls of some areas, and small rocks have fallen off the roof.Considering the failure mechanism of blasting vibration on the surrounding rock of roadway, the aim of maintaining stope stability can be achieved by adopting corresponding blasting control measures.Therefore, based on the actual mine production, based on the measured vibration data of stope, by means of theoretical analysis and regression analysis, this paper analyzes the influence of deep-hole blasting vibration on the stability of surrounding rock in adjacent roadways by means of regression analysis and numerical calculation.Combined with the field production practice, the corresponding explosion control measures are put forward.The main research results of this paper are as follows: firstly, through the investigation of production process, blasting parameter design and roadway damage, the blasting vibration test of 745 middle stope is designed and carried out.The vibration velocity, duration, main shock frequency and so on were recorded during deep hole blasting.Secondly, through regression analysis of measured data, the attenuation law of blasting vibration wave in this area is obtained, which provides the basis for optimization of blasting parameters in stope.Finally, the HHT method is used to analyze a measured signal in the stope. It is found that the energy is mainly concentrated in the 50Hz, and most of the energy is distributed in the low frequency band of the 10Hz~20Hz, which is close to the natural vibration frequency of the underground building, so it is easy to cause resonance and cause accidents.At the same time, it is also found that the distribution of instantaneous energy of the signal is mainly concentrated in the 0.2s~0.4s period, and the effect of slight difference is not obvious. It is suggested that the maximum amount of detonator and detonator section should be redetermined.Numerical simulation study on the stability of roadway under the action of dynamic load is carried out in order to achieve the best effect of earthquake reduction.In this paper, a numerical model is established according to the engineering practice, and the measured vertical vibration velocity is taken as the input waveform of dynamic load to calculate the stress field of roadway surrounding rock under gravity state and dynamic load state, respectively.The variation of displacement field, plastic zone and velocity field.The results show that although blasting vibration has little effect on the displacement, stress and plastic zone of surrounding rock of roadway, the change of roadway bottom is more obvious than that of other regions, which indicates that blasting vibration has limited damage to roadway.By comparing with the roadway after bolting and shotcreting, it is found that the bolting and shotcreting can further reduce the impact of blasting vibration on the roadway, and by monitoring the stress field and displacement field around the roadway (except floor),The variation law of velocity field with time shows that the variation curve of stress and velocity with time is approximately the same as that of dynamic load input waveform. At the same time, it is also found that the maximum change of stress extreme value and velocity extreme value are found at the base of roadway wall.The change of displacement (at the same time) is the biggest, which indicates that blasting vibration (only when the blasting source is directly below) has the greatest influence on the roadway bottom.Through monitoring the tunnel deformation before and after blasting, it is found that the deformation is in normal condition, which is close to the numerical simulation results.However, in practice, after multiple cumulative blasting, the roadway above the working point will still be destroyed to a certain extent, and after frequent mining in the future, the damage of surrounding rock of roadway will accumulate further, and then exceed the safety threshold, which will eventually lead to the roadway instability.Therefore, after tunneling, support measures should be taken in time to the dangerous area, and the blasting operation parameters should be adjusted to reduce the damage caused by blasting vibration to the roadway.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TD322.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曾傳義;;我國(guó)振動(dòng)出礦機(jī)的現(xiàn)狀[J];湖南冶金;1982年03期
2 蔡匡;潘長(zhǎng)良;;地下出礦設(shè)備的合理應(yīng)用范圍[J];有色金屬(礦山部分);1982年05期
3 古德生;;我國(guó)振動(dòng)出礦技術(shù)發(fā)展現(xiàn)狀及前景[J];金屬礦山;1983年02期
4 惠中;;振動(dòng)出礦的科研方向淺析[J];云南冶金;1983年03期
5 黃存紹;王惠英;;振動(dòng)出礦對(duì)安全生產(chǎn)的影響[J];冶金安全;1983年02期
6 李覺(jué)新;古德生;;我國(guó)振動(dòng)出礦機(jī)的發(fā)展[J];有色礦山;1983年04期
7 В.Г.胡齊什維利;楊培章;;振動(dòng)出礦對(duì)振動(dòng)出礦機(jī)和采場(chǎng)底部結(jié)構(gòu)的一些要求[J];國(guó)外金屬礦采礦;1984年10期
8 肖厚生;;附著式振動(dòng)出礦機(jī)[J];有色金屬(礦山部分);1984年04期
9 張宏超;;振動(dòng)出礦機(jī)的安裝[J];礦山機(jī)械;1987年05期
10 吳愛(ài)祥,古德生;連續(xù)強(qiáng)化出礦幾個(gè)問(wèn)題的探討[J];化工礦山技術(shù);1990年01期
相關(guān)會(huì)議論文 前6條
1 文留海;;銅礦峪礦530中段出礦設(shè)備優(yōu)選方案[A];全國(guó)冶金礦山現(xiàn)代采礦技術(shù)及裝備學(xué)術(shù)研討會(huì)論文集[C];2012年
2 文留海;周馭;;銅礦峪礦530中段出礦設(shè)備優(yōu)選方案[A];第九屆全國(guó)采礦學(xué)術(shù)會(huì)議暨礦山技術(shù)設(shè)備展示會(huì)論文集[C];2012年
3 柴大偉;李慶倩;崔存旺;;復(fù)雜大水礦山優(yōu)化鑿爆參數(shù)提高出礦效率[A];第十六屆六省礦山學(xué)術(shù)交流會(huì)論文集[C];2009年
4 ;煤炭市場(chǎng)出現(xiàn)轉(zhuǎn)折煤價(jià)可能穩(wěn)中有降[A];中國(guó)縫制械行業(yè)“十一五”發(fā)展戰(zhàn)略高層論壇論文集[C];2005年
5 ;甘肅金川鎳礦二礦區(qū)采礦出礦貧化率控制[A];2009年度中國(guó)地質(zhì)科技新進(jìn)展和地質(zhì)找礦新成果資料匯編[C];2009年
6 陳龍;;西石門(mén)鐵礦塹溝平底結(jié)構(gòu)回采方案研究[A];晉瓊粵川魯冀遼七省金屬(冶金)學(xué)會(huì)第二十一屆礦業(yè)學(xué)術(shù)交流會(huì)論文集[C];2014年
相關(guān)重要報(bào)紙文章 前10條
1 王治軍;大山深處的“出礦狀元”[N];中國(guó)有色金屬報(bào);2010年
2 宗伯明;龍首礦累計(jì)完成井下出礦150余萬(wàn)噸[N];金昌日?qǐng)?bào);2010年
3 全日安;攀鋼白馬礦年底要出礦[N];中國(guó)冶金報(bào);2005年
4 通訊員 葉志忠;每噸95元 上浮不超過(guò)10%[N];昌吉日?qǐng)?bào);2006年
5 呂云沖 王賓客;招金礦業(yè)首季出礦能力達(dá)千噸[N];中國(guó)冶金報(bào);2009年
6 王克乾;智力“采金”創(chuàng)佳績(jī)[N];中國(guó)礦業(yè)報(bào);2002年
7 本報(bào)記者 書(shū)生 通訊員 嘉關(guān);原煤出礦實(shí)行限價(jià)[N];阿克蘇日?qǐng)?bào);2006年
8 市總工會(huì)供稿;千尺井下排頭兵[N];承德日?qǐng)?bào);2007年
9 本報(bào)記者 李東 通訊員 徐京民;創(chuàng)造奇跡的“出礦狀元”[N];中國(guó)黃金報(bào);2010年
10 李有仁;出礦“狀元”[N];中國(guó)礦業(yè)報(bào);2003年
相關(guān)碩士學(xué)位論文 前4條
1 孫明亮;眼前山鐵礦西端幫誘導(dǎo)冒落礦體出礦控制技術(shù)研究[D];東北大學(xué);2013年
2 韓曉亮;爆破動(dòng)載作用下出礦巷道穩(wěn)定性研究[D];江西理工大學(xué);2016年
3 李迅;金山店鐵礦出礦優(yōu)化模型及應(yīng)用研究[D];武漢科技大學(xué);2011年
4 肖雄;緩傾斜中厚礦體采礦方法的采場(chǎng)出礦系統(tǒng)優(yōu)化研究[D];中南大學(xué);2005年
,本文編號(hào):1743366
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1743366.html