磨機(jī)換襯板專用機(jī)械手的拓?fù)鋬?yōu)化設(shè)計(jì)
本文選題:磨機(jī)換襯板專用機(jī)械手 切入點(diǎn):拓?fù)鋬?yōu)化 出處:《江西理工大學(xué)》2017年碩士論文
【摘要】:對(duì)于整個(gè)磨機(jī)系統(tǒng)而言,襯板是數(shù)量最大的零部件之一,也是受磨損破壞量最多的零部件之一。傳統(tǒng)采用人工的方式更換襯板耗時(shí)長(zhǎng),工人的勞動(dòng)強(qiáng)度也大且還存在安全隱患,這嚴(yán)重影響磨機(jī)的作業(yè)效率。因此,研制出性能穩(wěn)定、工作可靠的磨機(jī)換襯板專用機(jī)械手對(duì)解決礦山磨機(jī)襯板更換問(wèn)題,將產(chǎn)生重大意義。本文以某礦山選礦廠筒體直徑為4.8m的球磨機(jī)為對(duì)象,針對(duì)初期設(shè)計(jì)的磨機(jī)換襯板專用機(jī)械手撓度過(guò)大的問(wèn)題,采用連續(xù)體拓?fù)鋬?yōu)化的方法對(duì)其進(jìn)行拓?fù)鋬?yōu)化設(shè)計(jì),得到的磨機(jī)換襯板專用機(jī)械新手結(jié)構(gòu),并通過(guò)仿真分析進(jìn)行驗(yàn)證。全文主要進(jìn)行了以下研究工作。(1)分析磨機(jī)換襯板專用機(jī)械手的原理及組成,設(shè)計(jì)其運(yùn)動(dòng)系統(tǒng)的主要技術(shù)參數(shù)與最大負(fù)載下四個(gè)不同工況。對(duì)比分析各工況,并針對(duì)其中三個(gè)相對(duì)較危險(xiǎn)工況做了結(jié)構(gòu)靜力分析,以確定危險(xiǎn)工況。同時(shí),為確定對(duì)整機(jī)撓度變形影響較大的零部件,對(duì)主要組成部件吊臂與爪具體也進(jìn)行了具體的撓度變形分析。結(jié)果表明:安裝離機(jī)械手最遠(yuǎn)且俯仰角最小位置的襯板時(shí)對(duì)應(yīng)的工況3的應(yīng)力與變形都是最大的,即確定工況3為危險(xiǎn)工況;危險(xiǎn)工況下,整機(jī)最大變形量為7.713mm,即撓度變形過(guò)大、剛度不足;且吊臂與爪具體單部件獨(dú)的變形量都大,則知它們對(duì)整機(jī)的撓度變形影響度很大。由此得到的結(jié)論為后文磨機(jī)換襯板專用機(jī)械手拓?fù)鋬?yōu)化設(shè)計(jì)指明了方向。(2)在Hyperworks軟件的優(yōu)化模塊Optistruct中,基于SIMP方法的拓?fù)鋬?yōu)化模型,以體積分?jǐn)?shù)為約束、最小柔度為目標(biāo)的方法,對(duì)磨機(jī)換襯板專用機(jī)械手的吊臂與爪具體分別做了拓?fù)鋬?yōu)化設(shè)計(jì),得到新結(jié)構(gòu)。最后針對(duì)危險(xiǎn)工況做了整機(jī)的剛度驗(yàn)證。結(jié)果表明:經(jīng)拓?fù)鋬?yōu)化設(shè)計(jì)后,整機(jī)的撓度變形減小到4.228mm,且應(yīng)力仍小于材料許用應(yīng)力值,機(jī)械手準(zhǔn)確抓取并對(duì)位安裝襯板的可靠性得到提高。(3)針對(duì)危險(xiǎn)工況,對(duì)拓?fù)鋬?yōu)化后的磨機(jī)換襯板專用機(jī)械手做模態(tài)分析與瞬態(tài)分析,并與優(yōu)化前的分析結(jié)果作對(duì)比;同時(shí)在Solidworks Motion插件中做工作過(guò)程運(yùn)動(dòng)仿真。結(jié)果顯示:拓?fù)鋬?yōu)化后的磨機(jī)換襯板專用機(jī)械手的前兩階固有頻率得到提高,更好地避免低頻干擾共振的發(fā)生;在瞬態(tài)沖擊載荷作用下,優(yōu)化前的整機(jī)在1.6s后達(dá)到穩(wěn)定狀態(tài),而優(yōu)化后僅在0.8s后就達(dá)到了穩(wěn)定狀態(tài),時(shí)間明顯縮短,整機(jī)的穩(wěn)定性更好;運(yùn)動(dòng)仿真過(guò)程中位移、速度及加速度曲線均是光滑的,不產(chǎn)生零部件間的干涉碰撞,即拓?fù)鋬?yōu)化設(shè)計(jì)的整機(jī)在運(yùn)動(dòng)性能方面結(jié)構(gòu)合理。
[Abstract]:For the whole mill system, the liner is one of the largest parts, and also one of the most damaged parts. The traditional manual method to replace the liner takes a long time, the labor intensity of workers is also large and there are hidden dangers of safety. This has seriously affected the working efficiency of the mill. Therefore, a special manipulator, which has stable performance and reliable work, has been developed to solve the problem of replacing the lining plate of the mine mill. This paper takes the ball mill with the diameter of 4.8 m in a mine concentrator as the object, aiming at the problem of excessive deflection of the special manipulator designed in the initial stage for changing the lining plate of the mill. The topology optimization method is used to optimize the topology of the mill, and the new mechanical structure is obtained. The main work of this paper is as follows: 1) analyzing the principle and composition of the special manipulator for the mill lining plate. The main technical parameters of the motion system are designed and four different working conditions under the maximum load are designed. Each condition is compared and analyzed, and structural static analysis is made for three relatively dangerous working conditions in order to determine the dangerous working conditions. In order to determine the parts which have great influence on the deflection of the whole machine, The deflection analysis of the main components of the boom and claw is also carried out. The results show that the stress and deformation of the working condition 3 are maximum when installing the liner which is the farthest away from the manipulator and with the smallest pitch angle. The maximum deformation of the whole machine is 7.713mm, that is, the deflection is too large and the stiffness is insufficient. It is known that they have great influence on the deflection and deformation of the whole machine. The conclusion indicates the direction of topology optimization design of the special manipulator for the mill lining plate.) in the optimization module Optistruct of Hyperworks software, the topology optimization model based on SIMP method is proposed. Taking volume fraction as constraint and minimum flexibility as objective method, the specific topology optimization design of boom and claw of special manipulator for changing lining plate of grinding machine is made. The new structure is obtained. Finally, the stiffness of the whole machine is verified according to the dangerous conditions. The results show that the deflection of the whole machine is reduced to 4.228 mm after topology optimization, and the stress is still less than the allowable stress of the material. According to the dangerous condition, the modal analysis and transient analysis of the special manipulator after topology optimization are done, and the results are compared with the results before optimization. At the same time, the simulation of the working process in the Solidworks Motion plug-in is done. The results show that the first two natural frequencies of the special manipulator for changing linings of the mill are improved after topology optimization, and the low frequency interference resonance is better avoided; Under the action of transient impact load, the whole machine before optimization reaches the stable state after 1.6 seconds, but only reaches the stable state after 0.8 seconds after optimization, the time is obviously shortened, and the stability of the whole machine is better. The velocity and acceleration curves are smooth, and there is no interference collision between parts, that is, the structure of the whole machine designed by topology optimization is reasonable in terms of motion performance.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD453;TP241
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;中信重工首臺(tái)重型磨機(jī)換襯板智能機(jī)器人即將下線[J];礦山機(jī)械;2016年01期
2 起雪梅;張敬東;;基于ANSYS Workbench的汽車主軸瞬態(tài)動(dòng)力學(xué)分析[J];機(jī)械;2014年11期
3 管貽生;鄧休;李懷珠;尹振能;吳文強(qiáng);江勵(lì);;工業(yè)機(jī)器人的結(jié)構(gòu)分析與優(yōu)化[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年09期
4 岳華;;基于ANSYS Workbench的起重機(jī)箱型懸臂梁優(yōu)化設(shè)計(jì)[J];大眾標(biāo)準(zhǔn)化;2013年06期
5 陳祥;劉辛軍;;基于RAMP插值模型結(jié)合導(dǎo)重法求解拓?fù)鋬?yōu)化問(wèn)題[J];機(jī)械工程學(xué)報(bào);2012年01期
6 王在偉;焦青;;SolidWorks與ANSYS之間的數(shù)據(jù)交換方法研究[J];煤礦機(jī)械;2011年09期
7 胡瑞姣;;基于靈敏度變化率的漸進(jìn)結(jié)構(gòu)頻率優(yōu)化算法[J];機(jī)械;2011年07期
8 李剛;宋三靈;張凱;;重載操作機(jī)鉗臂結(jié)構(gòu)多工況拓?fù)鋬?yōu)化設(shè)計(jì)[J];計(jì)算力學(xué)學(xué)報(bào);2011年S1期
9 定治明;劉靜;魯修宇;李平生;高新平;;球磨機(jī)襯板材料的發(fā)展概況及選材要點(diǎn)[J];礦山機(jī)械;2010年19期
10 王玉飛;;拆除機(jī)器人結(jié)構(gòu)的瞬態(tài)動(dòng)力學(xué)分析[J];裝備制造技術(shù);2010年08期
相關(guān)博士學(xué)位論文 前1條
1 賀丹;漸進(jìn)結(jié)構(gòu)優(yōu)化方法的改進(jìn)策略及應(yīng)用[D];大連理工大學(xué);2008年
相關(guān)碩士學(xué)位論文 前3條
1 李攀;約束阻尼結(jié)構(gòu)動(dòng)力學(xué)拓?fù)鋬?yōu)化方法研究[D];重慶大學(xué);2013年
2 蔣辰宇;濕式球磨機(jī)襯板材料的設(shè)計(jì)及組織性能研究[D];哈爾濱工程大學(xué);2013年
3 肖登紅;電動(dòng)自行車車架結(jié)構(gòu)拓?fù)鋬?yōu)化研究[D];中北大學(xué);2011年
,本文編號(hào):1678496
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1678496.html