礦井軌道運(yùn)輸智能測速系統(tǒng)的開發(fā)與應(yīng)用
本文選題:智能防跑車系統(tǒng) 切入點(diǎn):環(huán)形線圈傳感器 出處:《大連交通大學(xué)》2015年碩士論文
【摘要】:煤炭資源是國民經(jīng)濟(jì)的命脈,礦井軌道運(yùn)輸在煤礦生產(chǎn)成本中占有非常大的比重。隨著使用時(shí)間的增加,礦井軌道運(yùn)輸設(shè)備日益老化,從而導(dǎo)致軌道安全運(yùn)輸事故日趨嚴(yán)重。根據(jù)不完全統(tǒng)計(jì),在煤礦生產(chǎn)過程中,軌道運(yùn)輸安全事故時(shí)有發(fā)生,約占礦井安全生產(chǎn)事故的13.5%,礦井軌道安全運(yùn)輸事故于越來越引起社會(huì)的關(guān)注。為保證礦井軌道運(yùn)輸安全,智能防跑車系統(tǒng)(國外也稱之為防墜器、自動(dòng)剎車器或減速器)在煤炭開采行業(yè)得到了廣泛的應(yīng)用。作為智能防跑車系統(tǒng)的核心部分,軌道礦車智能測速系統(tǒng)的性能是衡量智能防跑車系統(tǒng)可靠性的最重要參數(shù)之一。隨著計(jì)算機(jī)控制技術(shù)的不斷發(fā)展,越來越多的先進(jìn)技術(shù)被應(yīng)用到軌道礦車測速系統(tǒng)的設(shè)計(jì)中。本文在對現(xiàn)有的軌道礦車測速系統(tǒng)與幾種常見礦車測速模型進(jìn)行分析后,綜合考慮了成本、可靠性、安全性、可拓展性等因素,把環(huán)形線圈引入到軌道礦車檢測領(lǐng)域中來,將PLC作為現(xiàn)場采集與控制器,使用工業(yè)計(jì)算機(jī)與組態(tài)軟件實(shí)現(xiàn)HMI(人機(jī)界面)的方案,共同組建軌道礦車運(yùn)行狀態(tài)的監(jiān)控體系。主要工作有:1.對幾種常用軌道礦車測速模型進(jìn)行分析,選擇本設(shè)計(jì)使用的測速模型。2.根據(jù)本設(shè)計(jì)使用的測速模型,結(jié)合軌道礦車測速的現(xiàn)場環(huán)境,對傳感器進(jìn)行選型,將并在此基礎(chǔ)上進(jìn)行系統(tǒng)整體構(gòu)建。3.在系統(tǒng)整體方案確定的前提下,設(shè)計(jì)系統(tǒng)硬件部分進(jìn)。研究環(huán)形線圈傳感器對礦車的檢測原理,分析影響檢測精度的參數(shù),針對分析結(jié)果,對環(huán)形線圈傳感器進(jìn)行適當(dāng)改進(jìn)。然后進(jìn)行PLC和工業(yè)計(jì)算機(jī)的選型和接口分配,并根據(jù)系統(tǒng)功能需求設(shè)計(jì)PLC和工業(yè)計(jì)算機(jī)的電氣連接方式。4.研究傳感器單片機(jī)對礦車檢測方法,完成單片機(jī)算法的編寫。5.根據(jù)測速系統(tǒng)的功能需求,并完成PLC程序設(shè)計(jì)。6.根據(jù)系統(tǒng)所包含設(shè)備構(gòu)建數(shù)據(jù)網(wǎng)絡(luò),并將數(shù)據(jù)集中至上位機(jī),根據(jù)功能需求完成HMI(人機(jī)界面)的設(shè)計(jì)。結(jié)論:將環(huán)形線圈引用到該系統(tǒng)中用于礦車檢測,使用PLC和組態(tài)軟件參與系統(tǒng)的構(gòu)建,使系統(tǒng)具有較好的應(yīng)用價(jià)值。
[Abstract]:The coal resource is the lifeblood of the national economy, the mine rail transportation occupies the very big proportion in the coal mine production cost. With the increase of the use time, the mine rail transportation equipment is aging day by day. According to incomplete statistics, in the process of coal mine production, rail transportation safety accidents occur from time to time. About 13.5% of mine safety accidents, mine rail safety transportation accident has attracted more and more attention of the society. To ensure the safety of mine rail transportation, intelligent anti-sports car system (also known as anti-falling device abroad), Automatic brake or reducer) has been widely used in the coal mining industry. The performance of the intelligent speed measuring system of railway car is one of the most important parameters to measure the reliability of intelligent anti-sports car system. With the development of computer control technology, More and more advanced technologies have been applied to the design of the speed measuring system of rail cars. After analyzing the existing speed measurement system of rail cars and several common models, the cost, reliability and safety are considered comprehensively. In this paper, the loop coil is introduced into the detection field of rail car, and PLC is used as the field acquisition and controller, and the HMI (man-machine interface) scheme is realized by using industrial computer and configuration software. The main work of this paper is to analyze several commonly used speed measurement models of rail cars, and select the speed measurement model used in this design. 2. According to the speed measurement model used in this design, Combined with the field environment of track car speed measurement, the sensor is selected, and on this basis, the whole system will be constructed. 3. Under the premise of the determination of the overall scheme of the system, The hardware part of the system is designed. The detection principle of the loop coil sensor to the mine car is studied, and the parameters that affect the detection accuracy are analyzed. The loop coil sensor is improved properly. Then the selection and interface distribution of PLC and industrial computer are carried out, and the electrical connection mode of PLC and industrial computer is designed according to the functional requirements of the system. According to the function requirement of the speed measuring system and the PLC program design. The data network is constructed according to the equipment included in the system, and the data is centralized to the upper computer. The design of HMI (man-machine interface) is completed according to the functional requirements. Conclusion: the annular coil is used in the system for mining vehicle detection, and the PLC and configuration software are used in the construction of the system, which makes the system have better application value.
【學(xué)位授予單位】:大連交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TD634
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 肖迎春;梁長垠;曹悅;;基于磁傳感器的道路車輛參數(shù)檢測系統(tǒng)[J];傳感器與微系統(tǒng);2009年05期
2 楊成忠;陳高強(qiáng);;基于互感耦合原理的傳感器設(shè)計(jì)[J];機(jī)電工程;2011年05期
3 盧舟燕;劉金龍;洪美娟;孫兆軍;;斜井防跑車技術(shù)應(yīng)用現(xiàn)狀[J];煤礦機(jī)械;2006年01期
4 馬宏騫;;基于PLC的礦井風(fēng)機(jī)遠(yuǎn)程監(jiān)控系統(tǒng)的設(shè)計(jì)[J];煤炭技術(shù);2014年12期
5 陳明莉;;單片機(jī)精確測量信號頻率[J];軟件導(dǎo)刊;2007年07期
6 王躍鵬;;斜巷防跑車裝置在煤礦的應(yīng)用[J];山西能源與節(jié)能;2008年02期
7 趙艷秋;劉桂香;王廣義;;環(huán)形線圈車輛檢測器的研究[J];微計(jì)算機(jī)信息;2007年20期
8 李蓉;李娟;周孟然;;基于ARM+μC/OS-Ⅱ的斜井防跑車控制器設(shè)計(jì)[J];現(xiàn)代電子技術(shù);2008年14期
9 臧利林,賈磊,秦偉剛,張立東;基于環(huán)形線圈車輛檢測系統(tǒng)的研究與設(shè)計(jì)[J];儀器儀表學(xué)報(bào);2004年S1期
相關(guān)碩士學(xué)位論文 前1條
1 肖振鵬;基于單線圈的車輛信息檢測系統(tǒng)研究[D];吉林大學(xué);2007年
,本文編號:1670248
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1670248.html