基于組合客觀賦權(quán)法的厚松散層采動水砂突涌危險性評價
本文選題:厚松散含水層 切入點:水砂突涌 出處:《山東科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著煤炭資源的日趨緊張,水體下采煤逐漸成為能源開發(fā)的熱點問題。尤其是在中國中東部地區(qū),淺部上覆厚松散含水層,在采掘過程中上覆巖層發(fā)生水砂突涌的災(zāi)害經(jīng)常發(fā)生,再加上煤礦水砂突涌信息存在的數(shù)據(jù)復(fù)雜、非線性、樣本小的特點,危險性評價和預(yù)測極其困難,給礦井的安全生產(chǎn)帶來了巨大的威脅,嚴重制約著工業(yè)的發(fā)展。為了保證煤礦的安全開采,文中依靠MATLAB強大的數(shù)據(jù)處理和編程能力,以葛亭煤礦3煤層為例,對其上覆巖層水砂突涌進行風(fēng)險評價。首先收集研究區(qū)域的煤礦地質(zhì)、水文地質(zhì)、工程地質(zhì)資料,并用直流電法勘探、三維地震勘探、可控源音頻大地電磁法勘探頂板巖層充水性能,重點分析了研究區(qū)域含水層、隔水層的分布情況及富水性、各斷層的富水性,確定斷層的分布情況、發(fā)育情況。然后從理論上對頂板阻水機理進行分析,探索頂板巖層阻水性能的影響因素,并進行災(zāi)害形成與多種影響因素相關(guān)性分析。對采場覆巖破壞機理進行研究,分析工作面開采對覆巖的破壞特征。運用FLAC3D模擬厚松散層薄基巖下煤層開采過程,對開挖過程中上覆巖層的破壞規(guī)律及機理進行分析,確定去上覆巖層發(fā)生水砂突涌的影響因素,并進行多種影響因素與上覆巖層水砂突涌相關(guān)性分析。最后以MATLAB2012a為平臺,構(gòu)建基于層次分析水砂突涌主控因素確定模型,并結(jié)合YAAHP靈敏度分析,選取出厚松散層薄基巖下水砂突涌危險性評價指標(biāo)。通過MATLAB2012a構(gòu)建基于主成分-熵權(quán)危險性評價模型,確定出評價指標(biāo)的權(quán)重。引入圖像分割中的Ostu算法,確定厚松散層水砂突涌危險性閾值。然后根據(jù)模型計算的結(jié)果,進行危險性分區(qū)。最后將模型設(shè)計成系統(tǒng)應(yīng)用到煤礦實際中,為同等地質(zhì)條件下采煤提供危險性評價和預(yù)測。經(jīng)過分析得到危險分區(qū)劃分如下:研究目標(biāo)的危險區(qū)域和較危險區(qū)域主要集中在鉆孔1號、鉆孔9~14號、鉆孔32~33號、鉆孔38號所在的區(qū)域,此部分位于煤層的的西北、西南、北部區(qū)域;安全區(qū)域和較安全區(qū)域主要集中在鉆孔3~4、6~9號、15~30號、34~37號所在的區(qū)域,此部分位于煤層的東部、東西部區(qū)域;過渡區(qū)域主要集中在為鉆孔5號、17~23號、39號,此部分主要為煤層的中部區(qū)域。
[Abstract]:With the increasing shortage of coal resources, coal mining under water has gradually become a hot issue in energy development. Especially in central and eastern China, shallow overlying thick and loose aquifers, In the process of mining, the disaster of overlying strata with water and sand outburst often occurs. In addition, because of the complex data, nonlinear and small sample data, it is very difficult to evaluate and predict the risk. In order to ensure the safe mining of coal mine, this paper relies on the powerful data processing and programming ability of MATLAB, taking the coal seam No. 3 of Geting Coal Mine as an example. The risk assessment of water and sand outburst of overlying strata is carried out. Firstly, the data of coal mine geology, hydrogeology and engineering geology in the study area are collected, and the data are explored by direct current method and 3D seismic exploration. The water-filling performance of roof strata is explored by controllable source audio frequency magnetotelluric method. The distribution and water enrichment of aquifer and water barrier layer in the study area, the water-rich property of each fault, and the distribution of faults are analyzed emphatically. Then the mechanism of roof water resistance is analyzed theoretically, and the influencing factors of water resistance of roof strata are explored, and the correlation analysis between disaster formation and various influencing factors is carried out, and the failure mechanism of overburden rock in stope is studied. The failure characteristics of overburden strata caused by mining face are analyzed. FLAC3D is used to simulate the mining process of coal seams under thick loose strata and thin bedrock, and the failure law and mechanism of overlying strata during excavation are analyzed. The influencing factors of water and sand outburst in overlying strata are determined, and the correlation analysis between various influencing factors and water and sand outburst in overlying strata is carried out. Finally, based on the MATLAB2012a platform, the determination model of the main control factors of water sand surge is constructed based on the hierarchical analysis. Based on the sensitivity analysis of YAAHP, the risk evaluation index of sand outburst in thick and thin bedrock is selected. Based on principal component entropy weight risk assessment model, the weight of evaluation index is determined by MATLAB2012a, and the Ostu algorithm in image segmentation is introduced. The hazard threshold of water and sand burst in thick loose bed is determined. Then, according to the results of model calculation, the hazard zoning is carried out. Finally, the model is designed to be applied to coal mine practice. It is concluded that the dangerous area and the more dangerous area of the research target are mainly concentrated in borehole No. 1, borehole 9~ 14, borehole 32- 33, through analysis and prediction for coal mining under the same geological conditions. Borehole No. 38 is located in the northwest, southwest and northern regions of coal seam, the safety area and the safer area are mainly located in the area where borehole No. 3Y4Y6- 9 ~ 15-30, No. 34 ~ 37, is located in the east and west of the coal seam. The transition area is mainly located in No. 17 ~ 23 and 39 of borehole No. 5, and this part is mainly the middle part of coal seam.
【學(xué)位授予單位】:山東科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD745
【參考文獻】
相關(guān)期刊論文 前10條
1 邵銀川;張承斌;;突水災(zāi)害性流量閾值預(yù)警的研究[J];科技視界;2016年16期
2 褚建偉;;淺析煤礦回采巷道礦山壓力控制與支護[J];化工管理;2015年06期
3 王家臣;楊敬虎;;水沙涌入工作面頂板結(jié)構(gòu)穩(wěn)定性分析[J];煤炭學(xué)報;2015年02期
4 彭賜燈;;礦山壓力與巖層控制研究熱點最新進展評述[J];中國礦業(yè)大學(xué)學(xué)報;2015年01期
5 馮寶俊;劉敦文;褚夫蛟;;基于PSO-SVM模型的隧道水砂突涌量預(yù)測研究[J];中國安全生產(chǎn)科學(xué)技術(shù);2014年07期
6 張宏偉;朱志潔;霍利杰;陳鎣;霍丙杰;;特厚煤層綜放開采覆巖破壞高度[J];煤炭學(xué)報;2014年05期
7 李遠曉;;礦井水文智能監(jiān)測系統(tǒng)的設(shè)計與實現(xiàn)[J];河南科技;2013年11期
8 劉雙躍;陳麗娜;王娟;王丹;江飛;;基于模糊聚類分析和模糊模式識別的煤層底板突水區(qū)域預(yù)測[J];礦業(yè)安全與環(huán)保;2013年02期
9 孟召平;高延法;盧愛紅;王睿;喬旭;黃成玉;;第四系松散含水層下煤層開采突水危險性及防水煤柱確定方法[J];采礦與安全工程學(xué)報;2013年01期
10 武強;張波;趙文德;劉守強;;煤層底板突水評價的新型實用方法Ⅴ:基于GIS的ANN型、證據(jù)權(quán)型、Logistic回歸型脆弱性指數(shù)法的比較[J];煤炭學(xué)報;2013年01期
相關(guān)博士學(xué)位論文 前3條
1 張樂中;煤礦深部開采底板突水機理研究[D];長安大學(xué);2013年
2 王曉振;松散承壓含水層下采煤壓架突水災(zāi)害發(fā)生條件及防治研究[D];中國礦業(yè)大學(xué);2012年
3 尹增德;采動覆巖破壞特征及其應(yīng)用研究[D];山東科技大學(xué);2007年
相關(guān)碩士學(xué)位論文 前7條
1 楊勝;潘謝礦區(qū)深部煤層開采水文工程地質(zhì)測試與條件分析[D];安徽理工大學(xué);2016年
2 史向東;煤巷復(fù)合頂板變形破壞機理及支護技術(shù)研究[D];西安科技大學(xué);2014年
3 劉成明;隧道水砂突涌災(zāi)害及其治理方法的研究[D];重慶交通大學(xué);2013年
4 王楷;基于事故樹分析的壓力管道風(fēng)險評價方法研究[D];武漢理工大學(xué);2009年
5 張雁;防止煤層頂板水潰入礦井的預(yù)警系統(tǒng)研究[D];煤炭科學(xué)研究總院;2008年
6 馬文明;基于主成分分析法和熵值法的我國指數(shù)基金綜合評價[D];中南大學(xué);2007年
7 張玉軍;鐵北煤礦松軟砂巖含水層下綜放開采覆巖破壞及潰砂預(yù)測研究[D];煤炭科學(xué)研究總院;2005年
,本文編號:1607342
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1607342.html