采煤機液壓制動系統(tǒng)動態(tài)特性研究
本文關鍵詞: 采煤機 液壓制動 動態(tài)特性 AMESim 出處:《太原科技大學》2017年碩士論文 論文類型:學位論文
【摘要】:采煤機是現(xiàn)代煤礦綜采生產(chǎn)中主要的設備,是煤礦“三機”中必不可少的裝備,在煤礦生產(chǎn)中起不可替代的作用。因為煤礦井下環(huán)境惡劣,工況復雜,采煤機液壓制動系統(tǒng)的優(yōu)劣會影響到煤礦工人的生命安全、采煤機自身的安全性以及作業(yè)的可靠性,F(xiàn)在針對于采煤機液壓制動系統(tǒng)的研究比較少,大多以理論研究居多,缺乏深入的研究,因此研究采煤機液壓制動系統(tǒng)具有重要意義。本文以太重集團煤機有限公司生產(chǎn)的MG750/1940-WD型采煤機液壓制動系統(tǒng)為研究對象,針對采煤機在大傾角面工作時制動下滑的現(xiàn)象,進行了理論分析,對采煤機在大傾角面工作時的受力情況進行了受力分析,通過分析計算出了采煤機的制動安全系數(shù),提出了評判采煤機制動性能的各項指標,綜合分析得出影響采煤機下滑的原因是制動響應時間過長。為了分析制動響應時間對采煤機制動性能的影響,對可能影響制動響應時間的因素進行逐個分析。具體方法是:對采煤機制動系統(tǒng)進行了模型簡化,并對簡化的模型進行了數(shù)學建模,通過數(shù)學模型分析了制動系統(tǒng)各元件之間因果關系。在此基礎上利用AMESim仿真軟件對影響制動響應時間的各種因素進行了仿真驗證。具體方法是:根據(jù)建立的制動系統(tǒng)數(shù)學模型,在AMESim仿真分析軟件中建立了關鍵元件以及制動系統(tǒng)的仿真模型,為每個元件設置相應的參數(shù),研究制動器彈簧剛度、制動器彈簧預緊力、油液中空氣含量、液壓管路內(nèi)徑、電磁換向閥閥口通流截面積以及液壓管路長度對制動響應時間的影響。通過仿真得出:連接制動器和油箱之間的管路會影響制動響應時間,管路內(nèi)徑越大管路越長制動響應時間也越長,但管路內(nèi)徑不易過小,小于8mm時阻力過大,導致制動時間過長;制動器彈簧剛度不會對制動響應時間產(chǎn)生影響,而起作用的是制動彈簧預緊力;油液中空氣含量超過0.5%也會影響制動響應時間;電磁閥口截面積越小制動響應時間越長。因此,應設計合理的管路長度和內(nèi)徑,選擇合適的電磁換向閥以及避免油液中混入過多的空氣,來達到提高制動響應時間的目的,從而提高制動性能。
[Abstract]:The shearer is the main equipment in the comprehensive mining production of modern coal mine, is the indispensable equipment in the "three machines" of the coal mine, and plays an irreplaceable role in the coal mine production, because the underground environment of the coal mine is bad and the working condition is complex, The merits and demerits of hydraulic braking system of shearer will affect the life safety of coal miners, the safety of shearer itself and the reliability of operation. Because of the lack of in-depth research, it is of great significance to study the hydraulic braking system of shearer. In this paper, the hydraulic braking system of MG750/1940-WD type shearer produced by Taizhong Group Coal Machine Co., Ltd is taken as the research object. Aiming at the phenomenon of braking sliding when the shearer is working on a large inclined plane, this paper makes a theoretical analysis, and analyzes the force acting on the shearer when the shearer is working on a large inclined plane, and calculates the braking safety factor of the shearer by analyzing and calculating. In order to analyze the influence of braking response time on the braking performance of shearer, it is concluded that the braking response time is too long. The factors that may affect the braking response time are analyzed one by one. The specific methods are as follows: the model of the braking system of the shearer is simplified, and the simplified model is modeled mathematically. The causality between the components of braking system is analyzed by mathematical model. On the basis of this, various factors affecting braking response time are verified by AMESim simulation software. The specific method is: according to the established mathematical model of braking system, The simulation model of key components and braking system is established in AMESim software. The corresponding parameters are set up for each component. The stiffness of brake spring, the pretightening force of brake spring, the air content in oil and the inner diameter of hydraulic pipe are studied. The influence of electromagnetic directional valve orifice cross section area and hydraulic pipe length on braking response time. Through simulation, it is concluded that the connection between brake and fuel tank will affect the braking response time. The larger the inner diameter of the pipe, the longer the braking response time, but the inner diameter of the pipe is not easy to be too small, the resistance is too large when the diameter is less than 8 mm, the braking time is too long, and the brake spring stiffness will not affect the braking response time. The brake spring pretightening force is acting; the air content in the oil over 0.5% will also affect the braking response time; the smaller the section area of the solenoid valve, the longer the braking response time. Therefore, reasonable pipe length and inner diameter should be designed. Choosing proper electromagnetic reversing valve and avoiding too much air in the oil can increase the braking response time and improve the braking performance.
【學位授予單位】:太原科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD421.6
【參考文獻】
相關期刊論文 前10條
1 丁問司;張旭;袁林燕;;基于AMESim的交流正弦液壓泵動態(tài)特性仿真分析[J];液壓與氣動;2013年11期
2 崔連發(fā);;論采煤機的發(fā)展現(xiàn)狀及前景[J];勞動保障世界(理論版);2013年10期
3 張宏宇;;煤礦綜合機械化采煤工藝研究[J];中國新技術新產(chǎn)品;2013年04期
4 張世洪;周常飛;;薄煤層電牽引采煤機技術研究現(xiàn)狀與發(fā)展趨勢[J];煤礦機電;2013年01期
5 王振東;;煤礦綜合機械化采煤工藝研究[J];科技創(chuàng)新與應用;2012年25期
6 劉長海;徐宏興;王大宇;;大功率電牽引采煤機的發(fā)展概況及趨勢[J];煤礦機械;2010年08期
7 謝貴君;;電牽引采煤機的現(xiàn)狀與發(fā)展趨勢[J];煤礦機械;2009年02期
8 ;Frictional heat analysis of mine hoist and numerical simulation on temperature field of gasket[J];Mining Science and Technology;2009年01期
9 ;Mine-hoist fault-condition detection based on the wavelet packet transform and kernel PCA[J];Journal of China University of Mining & Technology;2008年04期
10 張軍輝;;我國煤礦采煤機的研制回顧、現(xiàn)狀以及發(fā)展[J];煤礦機械;2008年03期
相關碩士學位論文 前10條
1 趙津;采煤機潛在故障預測和可靠性分析[D];太原理工大學;2016年
2 趙強;提升機制動系統(tǒng)動態(tài)特性仿真及試驗研究[D];太原理工大學;2016年
3 資鵬;電牽引采煤機行走機構創(chuàng)新設計與評價研究[D];中北大學;2015年
4 孟凡林;采煤機截割部傳動系統(tǒng)負載模擬及強度分析[D];遼寧工程技術大學;2013年
5 徐二寶;基于AMESim的采煤機電液比例自動調(diào)高系統(tǒng)研究[D];安徽理工大學;2013年
6 陳曉強;采煤機電液比例調(diào)高系統(tǒng)設計與仿真分析[D];安徽理工大學;2013年
7 馬聯(lián)偉;薄煤層采煤機可靠性與疲勞壽命研究[D];遼寧工程技術大學;2013年
8 田震;薄煤層采煤機振動特性研究[D];遼寧工程技術大學;2013年
9 胡延濤;電牽引采煤機截割恒功率調(diào)速控制系統(tǒng)的研究[D];遼寧工程技術大學;2013年
10 張川;采煤機變轉(zhuǎn)速閉式液壓牽引監(jiān)控系統(tǒng)設計[D];安徽理工大學;2012年
,本文編號:1552132
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1552132.html