天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 礦業(yè)工程論文 >

Germanium in Magnetite:A Preliminary Review

發(fā)布時(shí)間:2018-02-27 20:23

  本文關(guān)鍵詞: germanium magnetite controlling factor iron deposits discriminate factor 出處:《Acta Geologica Sinica(English Edition)》2017年02期  論文類型:期刊論文


【摘要】:Magnetite is a very common mineral in various types of iron deposits and some sulfide deposits. Recent studies have focused on the use of trace elements in magnetite to discriminate ore types or trace ore-forming process. Germanium is a disperse element in the crust, but sometimes is not rare in magnetite. Germanium in magnetite can be determined by laser ablation ICP-MS due to its low detection limit(0.0X ppm). In this study, we summary the Ge data of magnetite from magmatic deposits, iron formations, skarn deposits, iron oxide copper-gold deposits, and igneous derived hydrothermal deposits. Magnetite from iron formations contains relatively high Ge(up to ~250 ppm), whereas those from all other deposits mostly contains Ge less than 10 ppm, indicating that iron formations can be discriminated from other Fe deposits by Ge contents. Germanium in magmatic/hydrothermal magnetite is controlled by a few factors. Primary magma/fluid composition may be the major control of Ge in magnetite. Higher oxygen fugacity may be beneficial to Ge partition into magnetite. Sulfur fugacity and temperature may have little effect on Ge in magnetite. The enrichment mechanism of Ge in magnetite from iron formations remains unknown due to the complex ore genesis. Germanium along with other elements(Mn, Ni, Ga) and element ratios(Ge/Ga and Ge/Si raios) can distinguish different types of deposits, indicating that Ge can be used as a discriminate factor like Ti and V. Because of the availability of in situ analytical technique like laser ablation ICP-MS, in situ Ge/Si ratio of magnetite can serve as a geochemical tracer and may provide new constraints on the genesis of banded iron formations.
[Abstract]:Magnetite is a very common mineral in various types of iron deposits and some sulfide deposits. Recent studies have focused on the use of trace elements in magnetite to discriminate ore types or trace ore-forming process. Germanium is a disperse element in the crust, but sometimes is not rare in magnetite. Germanium in magnetite can be determined by laser ablation ICP-MS due to its low detection limit(0.0X ppm). In this study, we summary the Ge data of magnetite from magmatic deposits, iron formations, skarn deposits, iron oxide copper-gold deposits, and igneous derived hydrothermal deposits. Magnetite from iron formations contains relatively high Ge(up to ~250 ppm), whereas those from all other deposits mostly contains Ge less than 10 ppm, indicating that iron formations can be discriminated from other Fe deposits by Ge contents. Germanium in magmatic/hydrothermal magnetite is controlled by a few factors. Primary magma/fluid composition may be the major control of Ge in magnetite. Higher oxygen fugacity may be beneficial to Ge partition into magnetite. Sulfur fugacity and temperature may have little effect on Ge in magnetite. The enrichment mechanism of Ge in magnetite from iron formations remains unknown due to the complex ore genesis. Germanium along with other elements(Mn, Ni, Ga) and element ratios(Ge/Ga and Ge/Si raios) can distinguish different types of deposits, indicating that Ge can be used as a discriminate factor like Ti and V. Because of the availability of in situ analytical technique like laser ablation ICP-MS, in situ Ge/Si ratio of magnetite can serve as a geochemical tracer and may provide new constraints on the genesis of banded iron formations.
【作者單位】: State
【基金】:funded by CAS “Light of West China” Program to YMM the Key project of the National Natural Science Foundation of China (41230316) National Natural Science Foundation of China (41503039) the “CAS Hundred Talents” Project to JFG (Y5CJ038000) Research Initial Funding (Y4KJA20001 and Y5KJA20001) Independent Topics Fund (Y4CJ009000) of the Institute of Geochemistry,Chinese Academy of Sciences
【分類號(hào)】:P618.31

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 ;Performance analysis and optimal design for well patterns in anisotropic formations[J];Petroleum Science;2008年03期

2 P. TEILHARD DE CHARDIN;C. C. YOUNG;;SOME CORRELATIONS BETWEEN THE GEOLOGY OF CHINA PROPER AND THE GEOLOGY OF MONGOLIA[J];中國地質(zhì)學(xué)會(huì)志;1930年02期

3 ;Ore-Bearing Formations of the Precambrian in South China and Their Prospects[J];Acta Geologica Sinica(English Edition);2004年02期

4 裘愉卓;王中剛;趙振華;;Preliminary Study of REE Iron Formations in China[J];Geochemistry(English Language Edition);1983年03期

5 Ch.Minjin,W.Ziegler,J.Munchtsetseg,J.Gereltsetseg,J.Undarya;The first discovery of the middle Lochkovian (Devonian) conodonts in South Gobi, Mongolia[J];Science in China(Series D:Earth Sciences);2005年01期

6 iJ搤健;裴文中;;ON THE CENOZOIC GEOLOGY BETWEEN LOYANG AND SIAN[J];中國地質(zhì)學(xué)會(huì)志;1934年00期

7 ;Geological setting of some classical selenium-bearing formations in China[J];Chinese Science Bulletin;1999年S2期

8 Amer M. Burgan;Che Aziz Ali;;An organic geochemical investigation on organic rich sediments from two Neogene formations in the Klias Peninsula area,West Sabah,Malaysia[J];Chinese Journal of Geochemistry;2009年03期

9 ;Thoughts on the Measurement and Calculation of Geogenetic Depth[J];Acta Geologica Sinica(English Edition);2000年02期

10 P. E. LAGERHJEIM;;ELECTRICAL INVESTIGATION OF OILFIELDS.[J];中國地質(zhì)學(xué)會(huì)志;1930年04期

相關(guān)會(huì)議論文 前4條

1 ;CHENGDU INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——ACHIEVEMENTS OF RESEARCH[A];中國地質(zhì)科學(xué)院文集(1983中英文合訂本)[C];1983年

2 ;INSTITUTE OF MINERAL DEPOSITS——PUBLICATIONS[A];中國地質(zhì)科學(xué)院文集(1983中英文合訂本)[C];1983年

3 ;TIANJIN INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——ACHIEVEMENTS OF RESEARCH[A];中國地質(zhì)科學(xué)院文集(1983中英文合訂本)[C];1983年

4 Liwei Chen;Baochun Huang;Zhiyu Yi;Jie Zhao;Yonggang Yan;;Paleomagnetism of ca.1.35 Ga sills in northern North China Craton and implications for paleogeographic reconstruction of the Mesoproterozoic supercontinent[A];中國科學(xué)院地質(zhì)與地球物理研究所2013年度(第13屆)學(xué)術(shù)論文匯編——地球深部結(jié)構(gòu)與過程研究室[C];2014年

相關(guān)博士學(xué)位論文 前1條

1 Wu Zhiqiang;[D];中國海洋大學(xué);2009年



本文編號(hào):1544180

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/kuangye/1544180.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d0f63***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com