含夾矸富水特厚煤層煤巷圍巖控制技術(shù)研究
本文關(guān)鍵詞: 特厚煤層 裂隙水 數(shù)值模擬 支護(hù)方案 圍巖控制 優(yōu)化方案 出處:《安徽理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:本課題以內(nèi)蒙古唐家會(huì)煤礦61101綜放工作面兩巷研究為背景,針對(duì)含夾矸富水特厚煤層煤巷的圍巖控制及支護(hù)技術(shù)進(jìn)行研究。水對(duì)巖石強(qiáng)度有很大的影響,巖石遇水軟化變形,從而導(dǎo)致巖石強(qiáng)度降低,錨桿錨索錨固力降低,甚至造成煤巖石巷道的崩塌,出現(xiàn)安全隱患以及造成安全事故。為了防止圍巖巷道發(fā)生變形坍塌,采用理論分析、數(shù)值模擬、現(xiàn)場(chǎng)監(jiān)測(cè)等方法對(duì)原支護(hù)方案進(jìn)一步研究。最終得出了如下結(jié)論:介紹了特厚煤層煤巷圍巖特征以及煤巷布置方式,煤巷圍巖遇水軟化時(shí)軟化系數(shù)的確定。通過(guò)理論分析,運(yùn)用巖石破壞準(zhǔn)則(庫(kù)倫-納維爾破壞準(zhǔn)則)確定應(yīng)力圓與抗剪強(qiáng)度直線的關(guān)系,還得出了最大主應(yīng)力與最小主應(yīng)力的關(guān)系式;建立煤層巷道頂板、底板梁的受力分析圖,分析影響頂板、底板破壞的因素,通過(guò)理論分析計(jì)算得出頂板、底板梁破壞時(shí)的最大撓度、轉(zhuǎn)角以及最大主應(yīng)力的關(guān)系式,確定了最大撓度及最大主應(yīng)力出現(xiàn)在頂板、底板梁的中部,最大轉(zhuǎn)角出現(xiàn)在頂板和底板梁的兩端;對(duì)頂板梁的穩(wěn)定性進(jìn)行分析,通過(guò)力學(xué)模型得出保持巖塊穩(wěn)定性的力學(xué)關(guān)系式,得出了巖塊水平推力和拱角豎向力的關(guān)系,巷道的跨度增大會(huì)導(dǎo)致水平推力以及拱角豎向力都增大,增加到一定程度巖塊就會(huì)發(fā)生滑落。利用物理實(shí)驗(yàn)的方法對(duì)遇水的巖石試樣進(jìn)行巖性分析,運(yùn)用FLAC3D數(shù)值模擬軟件對(duì)煤巷原始支護(hù)方案進(jìn)行分析,模擬的原始效果不理想,需要對(duì)原始支護(hù)方案進(jìn)行參數(shù)優(yōu)化。本文提出了四種優(yōu)化方案措施,分別是針對(duì)不同巷道斷面形狀、錨桿錨索的參數(shù)進(jìn)行優(yōu)化,將四種優(yōu)化方案通過(guò)數(shù)值模擬對(duì)比分析,最終得到平頂微拱形斷面的一個(gè)優(yōu)化方案比較合理。將理論應(yīng)用于現(xiàn)場(chǎng)實(shí)踐,通過(guò)對(duì)圍巖頂?shù)装逡约皟蓭偷奈灰埔平、頂板與兩幫的錨桿索錨固力大小的監(jiān)測(cè),確定優(yōu)化方案是比較合理的。本論文得出了以上研究成果,為以后相似地質(zhì)條件的圍巖支護(hù)提供了一定的理論依據(jù)。
[Abstract]:Based on the study of two roadways in 61101 fully mechanized caving face of Tangjiahui Coal Mine in Inner Mongolia, this paper studies the surrounding rock control and supporting technology of coal roadway with rich water and thick coal seam containing gangue. The water has a great influence on the rock strength, and the rock softens and deforms with water. Therefore, the strength of rock and the anchoring force of anchor cable are reduced, and even the collapse of coal and rock roadway, the hidden danger of safety and the safety accident are caused. In order to prevent the surrounding rock roadway from collapsing, theoretical analysis and numerical simulation are used. Field monitoring and other methods are used to further study the original support scheme. Finally, the following conclusions are drawn: the characteristics of surrounding rock and the layout of coal roadway are introduced, and the softening coefficient of surrounding rock in coal roadway is determined when the wall rock of coal roadway is softened by water. The relationship between the stress circle and the shear strength straight line is determined by using the rock failure criterion (Coulom-#internal_person0# failure criterion), and the relationship between the maximum principal stress and the minimum principal stress is obtained. By analyzing the factors affecting the failure of the roof and floor, the relationship between the maximum deflection, the angle of rotation and the maximum principal stress of the roof and beam is obtained by theoretical analysis and calculation, and the maximum deflection and the maximum principal stress appear in the roof, and the relationship between the maximum deflection and the maximum principal stress is determined. In the middle of the bottom beam, the maximum angle appears at the two ends of the roof beam and the bottom beam, the stability of the roof beam is analyzed, and the mechanical relationship to maintain the stability of the rock block is obtained by the mechanical model. The relation between horizontal thrust of rock block and vertical force of arch angle is obtained. The increase of span of roadway will result in the increase of horizontal thrust and vertical force of arch angle. If the rock mass is increased to a certain extent, the rock mass will slip. The original effect of the simulation is not satisfactory, the lithology of the rock sample in water is analyzed by physical experiment method, and the original support scheme of coal roadway is analyzed by FLAC3D numerical simulation software. It is necessary to optimize the parameters of the original support scheme. In this paper, four kinds of optimization methods are put forward, which are based on different roadway section shape and the parameters of anchor cable, and the four optimization schemes are compared and analyzed by numerical simulation. Finally, an optimization scheme of flat-roof micro-arch section is obtained. The theory is applied to the field practice. By monitoring the displacement of surrounding rock roof and bottom slab and two sides, the anchor force of roof and anchor cable is monitored. It is reasonable to determine the optimization scheme. The above research results are obtained in this paper, which provides a certain theoretical basis for the surrounding rock support with similar geological conditions in the future.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD353
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周浩;肖明;陳俊濤;;大型地下洞室全長(zhǎng)黏結(jié)式巖石錨桿錨固機(jī)制研究及錨固效應(yīng)分析[J];巖土力學(xué);2016年05期
2 李青鋒;易厚;朱川曲;;樹(shù)脂錨桿錨固段剪應(yīng)力分布及其損傷模式分析[J];湖南科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年01期
3 王威;楊張杰;王福海;王慶牛;陳康;劉鈴生;;全長(zhǎng)錨固技術(shù)在深井軟巖巷道中的應(yīng)用[J];煤炭工程;2016年02期
4 張明義;白曉宇;李偉偉;;GFRP抗浮錨桿螺母托盤錨具外錨固性能試驗(yàn)[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年01期
5 張向東;王帥;趙陽(yáng)豪;孫小彬;;基于端錨黏結(jié)式錨桿靜、動(dòng)載試驗(yàn)的非均勻受力錨桿單元[J];巖土力學(xué);2016年01期
6 劉泉聲;雷廣峰;彭星新;;深部裂隙巖體錨固機(jī)制研究進(jìn)展與思考[J];巖石力學(xué)與工程學(xué)報(bào);2016年02期
7 李青鋒;周澤;朱川曲;;采動(dòng)壓力對(duì)錨桿支護(hù)結(jié)構(gòu)漸進(jìn)損傷的數(shù)值模擬和實(shí)驗(yàn)研究[J];采礦與安全工程學(xué)報(bào);2015年06期
8 王紅衛(wèi);劉炎偉;田克勇;;三軟特厚煤層煤巷錨網(wǎng)支護(hù)技術(shù)應(yīng)用[J];中州煤炭;2015年08期
9 吳學(xué)震;蔣宇靜;王剛;李博;王健華;王春光;;大變形錨桿支護(hù)效應(yīng)分析[J];巖土工程學(xué)報(bào);2016年02期
10 張雄;陳勝宏;;預(yù)應(yīng)力錨索錨固段荷載傳遞解析算法[J];巖土力學(xué);2015年06期
相關(guān)會(huì)議論文 前1條
1 方祖烈;;拉壓域特征及主次承載區(qū)的維護(hù)理論[A];世紀(jì)之交軟巖工程技術(shù)現(xiàn)狀與展望[C];1999年
,本文編號(hào):1514191
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1514191.html