煤層液壓鉆自動糾偏裝置的研究
本文關(guān)鍵詞: 液壓鉆 扶正器 糾偏裝置 糾偏原理 糾偏控制 出處:《安徽理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:煤層液壓鉆自動糾偏裝置作為現(xiàn)代化的機械裝置,基于糾偏原理,結(jié)合了石油、天然氣行業(yè)中垂直井糾偏裝置的特點,利用液壓裝置提供糾偏力,并且在圓周上四個方向分別布置一個微型液壓缸,保證糾偏后鉆桿柱的對中性,并且采用藍牙傳輸數(shù)據(jù)的方式進行糾偏控制,能夠快速、高效地實現(xiàn)糾偏作業(yè),這極大地方便了煤炭井下工作人員的操作。本文針對不同直徑井眼,制定了不同的糾偏方案。對于小井眼直徑可采用扶正器組合的方法控制井眼軌跡;對于較大井眼可設(shè)置糾偏裝置對其進行軌跡糾偏。對于糾偏裝置,根據(jù)材料力學(xué)中的撓度計算方法建立方程,通過計算該方程的解來確定糾偏裝置的合理安置點,并算出糾偏力的大小。然后根據(jù)糾偏力的大小進行糾偏裝置中液壓裝置的設(shè)計。但整個糾偏裝置能否很好適應(yīng)井下工作還需進行仿真分析。本文利用ANSYS進行裝置的仿真研究,建立模型后利用Fluent和Static Structural進行耦合。首先針對不同的流體材料進行仿真分析,在結(jié)果中,查看其三維狀態(tài)下的壓力、速度、流線的分布情況和二維狀態(tài)下其壓力、速度、流線的分布情況。對于上返泥漿液的仿真則做了多組對比。結(jié)果發(fā)現(xiàn),不論下入的鉆井液還是上返的泥漿液,其都在糾偏裝置所在位置發(fā)生速度變化,速度數(shù)值上有顯著提高。本文根據(jù)流體仿真的結(jié)果,轉(zhuǎn)換數(shù)據(jù)到靜力場中進行耦合分析,將流體仿真中產(chǎn)生的壓力數(shù)據(jù)加載至鉆桿柱和糾偏裝置上,觀察其結(jié)果,鉆桿內(nèi)部的鉆井液壓力對鉆桿柱和糾偏裝置的影響并不大,屬于其材料可承受范圍之內(nèi),相同的,泥漿液對糾偏裝置也是有作用力的,但是這個作用力產(chǎn)生的形變和應(yīng)力是比較小的,對其不會有太大影響。但是,泥漿液對鉆桿的影響是非常明顯的,形變影響較小,但應(yīng)力過大,因此要改選相同公稱直徑、壁厚較厚的鉆桿。這說明本文中糾偏裝置的設(shè)計符合井下作業(yè)要求,可以面對井下泥漿液和鉆井液的沖擊。
[Abstract]:As a modern mechanical device, the automatic deviation correction device of coal seam hydraulic drill is based on the principle of deviation correction, combined with the characteristics of rectifying device in vertical well in petroleum and natural gas industry, and the hydraulic device is used to provide correction force. At the same time, a micro hydraulic cylinder is arranged in the four directions of the circle to ensure the neutral of the drill string after correcting the deviation, and to use Bluetooth to transmit the data to correct the deviation, which can quickly and efficiently realize the rectifying operation. This greatly facilitates the operation of coal downhole workers. In this paper, different deviation correction schemes are made for different boreholes with different diameters. For small borehole diameters, the method of centralizer combination can be used to control the wellbore trajectory; For the larger borehole, a correction device can be set up to correct the trajectory. For the rectifying device, the equation is established according to the deflection calculation method in the mechanics of materials. By calculating the solution of the equation, the reasonable placement point of the rectifying device is determined. Then, according to the magnitude of rectifying force, the hydraulic device in the rectifying device is designed. However, whether the whole rectifying device can adapt well to the downhole work still needs to be simulated and analyzed. In this paper, ANSYS is used in this paper. Carry on the simulation research of the device. The model is coupled by Fluent and Static Structural. Firstly, different fluid materials are simulated and analyzed. The distribution of pressure, velocity, streamline and the distribution of pressure, velocity and streamline in two-dimensional state are analyzed. The simulation of the upper and back slurry is compared in many groups. No matter the drilling fluid entered or the mud fluid returned up, the velocity of the drilling fluid changed in the position of the rectifying device, and the value of the velocity increased significantly. According to the results of fluid simulation, this paper shows that the velocity of the drilling fluid is better than that of the drilling fluid. The pressure data generated in the fluid simulation is loaded into the drill string and the rectifying device for the analysis of coupling data into the static field, and the results are observed. The drilling fluid pressure inside the drill pipe does not have a great effect on the drill string and the deviation correction device, which belongs to its material tolerance range. Similarly, the mud fluid also has an effect on the rectifying device. But the deformation and stress produced by this force is relatively small and will not have much effect on it. However, the effect of mud on the drill pipe is very obvious, the effect of deformation is small, but the stress is too large. Therefore, the drill pipe with the same nominal diameter and thick wall thickness should be changed, which shows that the design of the deviation correction device in this paper accords with the requirements of downhole operation and can face the impact of downhole mud and drilling fluid.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD421
【參考文獻】
相關(guān)期刊論文 前10條
1 王敏生;光新軍;;定向鉆井技術(shù)新進展及發(fā)展趨勢[J];石油機械;2015年07期
2 賀德軍;粟俊;何建文;;磁定位測量技術(shù)在定向?qū)鱼@井施工的應(yīng)用探析[J];中國井礦鹽;2015年01期
3 謝志勇;馮偉;;煤礦井下定向鉆孔施工工藝及技術(shù)研究[J];科技與企業(yè);2014年14期
4 余理清;顧強;;精準(zhǔn)定位技術(shù)在樂山礦區(qū)的應(yīng)用[J];中國井礦鹽;2013年06期
5 王子龍;;旋轉(zhuǎn)導(dǎo)向鉆井技術(shù)方法研究[J];中國石油和化工標(biāo)準(zhǔn)與質(zhì)量;2013年12期
6 姜偉;蔣世全;付鑫生;陳平;;旋轉(zhuǎn)導(dǎo)向鉆井技術(shù)應(yīng)用研究及其進展[J];天然氣工業(yè);2013年04期
7 盧毅;王國榮;嚴(yán)永發(fā);蔚海文;蔣光強;王裕海;;鉆桿開孔后剩余強度研究[J];石油機械;2013年03期
8 徐鳳玲;;一種隨鉆測井儀器的研制及應(yīng)用[J];中國西部科技;2010年25期
9 張春華;劉廣華;;隨鉆測量系統(tǒng)技術(shù)發(fā)展現(xiàn)狀及建議[J];鉆采工藝;2010年01期
10 楊剛;伊明;王新;楊萬和;;氣體鉆井井斜機理分析[J];新疆石油天然氣;2009年04期
,本文編號:1480005
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1480005.html