高植被覆蓋區(qū)銅鉬礦遙感植被地球化學(xué)特征提取
本文關(guān)鍵詞:高植被覆蓋區(qū)銅鉬礦遙感植被地球化學(xué)特征提取 出處:《中國(guó)地質(zhì)大學(xué)》2016年博士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 遙感 植物地球化學(xué) 植被覆蓋區(qū) 銅鉬礦床
【摘要】:福建省漳州市平和縣位于武夷山成礦帶南部,區(qū)內(nèi)構(gòu)造以斷裂為主,福安——南靖NE向深斷裂、上杭——云霄NW向深斷裂均通過(guò)本區(qū),并發(fā)育了多條NE向、NW向構(gòu)造帶,同時(shí),將樂(lè)——華安、泰寧——龍巖兩條SN向大斷裂帶及廈門(mén)——南靖EW向大斷裂帶也直接影響著研究區(qū)以致形成了極為復(fù)雜的地質(zhì)構(gòu)造格架,同時(shí)地形地貌也受到構(gòu)造活動(dòng)的影響。已初步查明區(qū)內(nèi)發(fā)現(xiàn)有銅、鉬、鐵、鉛、鋅、金等多金屬及葉臘石、高嶺土、泥煤等多種礦產(chǎn)。該區(qū)域成礦條件優(yōu)越,找礦潛力大,植被發(fā)育旺盛、為亞熱帶季風(fēng)性濕潤(rùn)氣候,是一個(gè)植被覆蓋的典型區(qū)域,局部第四系覆蓋較厚,地形起伏較大,傳統(tǒng)野外地質(zhì)工作條件艱苦,非常適合運(yùn)用快速有效且成本低廉的遙感方法在植被覆蓋區(qū)進(jìn)行地質(zhì)找礦。本文結(jié)合了遙感、植物學(xué)、植物地球化學(xué)、巖石學(xué)等相關(guān)知識(shí),較為系統(tǒng)地勘查了位于平和地區(qū)典型銅鉬礦區(qū)(鐘騰、泮池銅鉬礦區(qū))和銅、鉬、鉛、鋅等多金屬異常區(qū)及其外圍地區(qū)的自然景觀(guān)、植被群落特征、典型地物的光譜特征和衛(wèi)星影像特征;通過(guò)多光譜影像識(shí)別提取了研究區(qū)內(nèi)的線(xiàn)性構(gòu)造,并據(jù)此利用分形理論分析了線(xiàn)性構(gòu)造與礦床空間分布之間的關(guān)系;統(tǒng)計(jì)了銅鉬礦區(qū)、化探異常區(qū)的巖石、上方土壤和植被中的主要成礦元素和伴生元素含量特征;在確定了銅鉬礦區(qū)附近有效指示性植被和指示元素的同時(shí),分析了礦區(qū)與礦區(qū)外圍常見(jiàn)植物的光譜特征,找出了指示性?xún)?yōu)勢(shì)植被中的光譜反射率異常;將成礦母質(zhì)巖石、土壤、植被、植被光譜反射率曲線(xiàn)和航空高光譜影像中所呈現(xiàn)的繼承性異常串聯(lián)起來(lái),建立關(guān)系模型,反演出高植被覆蓋銅鉬礦區(qū)的遙感植物地球化學(xué)指示性元素含量空間分布特征。在高植被覆蓋區(qū)內(nèi)金屬礦床預(yù)測(cè)提供新的思路,具有良好的應(yīng)用價(jià)值和推廣意義。本文主要獲得了以下幾點(diǎn)成果和認(rèn)識(shí):1、研究區(qū)內(nèi)的低溫?zé)嵋盒偷V床與多光譜遙感影像上解譯提取的線(xiàn)性構(gòu)造存在密切的相關(guān)性,基于盒子維數(shù)分形理論的統(tǒng)計(jì)方法進(jìn)行線(xiàn)性構(gòu)造的定量分析可以得知,區(qū)內(nèi)線(xiàn)性構(gòu)造具有統(tǒng)計(jì)自相似性,從統(tǒng)計(jì)出的線(xiàn)性構(gòu)造分維等值線(xiàn)圖結(jié)果來(lái)看,已發(fā)現(xiàn)的熱液型礦點(diǎn)大多分布在分維值的高值區(qū)域附近,其中兩個(gè)銅鉬礦點(diǎn)的分維值分別是1.43(鐘騰銅鉬礦區(qū))和1.52(泮池銅鉬礦區(qū)),大小礬山(明礬礦區(qū))的分維值均為1.37。低值區(qū)域或附近未發(fā)現(xiàn)礦點(diǎn)分布。同時(shí),在遙感線(xiàn)性構(gòu)造分維10次趨勢(shì)圖中可以清晰地看到,位于中部呈現(xiàn)的環(huán)形高值區(qū)域與ETM+影像中的鐘騰環(huán)形構(gòu)造位置相吻合,該環(huán)形構(gòu)造是區(qū)域內(nèi)最大的火山機(jī)構(gòu)。綜合上述定量分析結(jié)果可得知,低溫?zé)嵋盒偷V床或礦化點(diǎn)常處于斷裂構(gòu)造較發(fā)育且空間分布較復(fù)雜的區(qū)域,這些線(xiàn)性構(gòu)造空間復(fù)雜度高的區(qū)域往往是導(dǎo)礦容礦的有利場(chǎng)所。2、從研究區(qū)典型常見(jiàn)植被波譜反射率曲線(xiàn)的特征分析結(jié)果可以發(fā)現(xiàn),區(qū)內(nèi)低溫?zé)嵋盒豌~鉬礦區(qū)(礦點(diǎn))或化探異常區(qū)域與礦區(qū)外圍典型植被波譜分析結(jié)果在波形特征、紅邊特征、葉綠素即水吸收特征、植被指數(shù)特征等方面有較大差異,且表現(xiàn)較為統(tǒng)一。礦區(qū)植被葉片或冠層反射率值均低于礦區(qū)外圍,紅邊位置發(fā)生了位移,存在“藍(lán)移”或“紅移”現(xiàn)象,葉綠素及水吸收特征存在差異,同時(shí)植被指數(shù)也存在明顯的差異。因此,借助柚樹(shù)、芒萁、烏毛蕨、茅草等區(qū)內(nèi)常見(jiàn)典型植被波譜特征分析結(jié)果,可以明確礦區(qū)植被在生長(zhǎng)過(guò)程中受到了下伏礦體中成礦金屬元素遷移的影響,使得金屬元素在葉體內(nèi)富集,影響了植被的正常生長(zhǎng),從含水量、葉綠素含量和細(xì)胞結(jié)構(gòu)等方面產(chǎn)生了變化,這些變化導(dǎo)致礦區(qū)與礦區(qū)外圍植被的波形特征存在差異。從最終分析結(jié)果可知,柚樹(shù)及芒萁的異常更為明顯,烏毛蕨次之,茅草的效果不明顯,因此,可將柚樹(shù)和芒萁作為區(qū)內(nèi)具有有效指示性的優(yōu)勢(shì)候選植被。3、研究區(qū)巖石、土壤以及植被中的元素含量測(cè)試分析結(jié)果得知,銅鉬礦區(qū)或化探異常區(qū)域的主要成礦元素以及伴生元素的元素含量多數(shù)高于礦區(qū)外圍或背景平均含量,說(shuō)明礦區(qū)上方巖石、土壤和植被中的相關(guān)元素具有一定的物質(zhì)繼承性,呈現(xiàn)出明顯的植物地球化學(xué)異常。4、不同植被或相同植被不同器官中元素的吸收聚集能力有所不同,研究區(qū)內(nèi)大多數(shù)常見(jiàn)植被種屬的葉部對(duì)元素聚集能力強(qiáng)于莖部,如柚樹(shù)、葉部富集W、Mo、 Co、Bi和Cu元素,芒萁的葉部除了上述元素還包括Zn和Pb,莖部沒(méi)有發(fā)現(xiàn)富集元素,但是柚樹(shù)的莖部卻富集Zn和Pb等。5、根據(jù)植被元素含量的襯度系數(shù)和屏障系數(shù)兩個(gè)參數(shù),并結(jié)合礦區(qū)常見(jiàn)植被波譜分析的結(jié)果,確定了研究區(qū)的有效指示性植被和指示元素。通過(guò)統(tǒng)計(jì)最終確定選擇芒萁、柚樹(shù)作為本次遙感植被地球化學(xué)統(tǒng)計(jì)的參考植被,即區(qū)域有效指示性植被,指示性元素有Pb、Mo、Co、Bi。6、以泮池銅鉬礦區(qū)附近為例,將植被地球化學(xué)異常特征與野外光譜反射率異常特征和高光譜影像數(shù)據(jù)結(jié)合起來(lái),建立植被光譜吸收深度與指示性元素含量的多元回歸關(guān)系,構(gòu)建回歸方程,定量反演指示性元素在研究區(qū)泮池銅鉬礦區(qū)附近的空間分布情況,結(jié)合多光譜影像對(duì)于區(qū)內(nèi)熱液型礦床的空間分布特征分析以及其他相關(guān)材料,證明基于遙感植被波譜異常提取植被覆蓋區(qū)銅鉬礦床礦化信息的方法能夠較好地反映出區(qū)內(nèi)的成礦元素及其伴生元素異常的空間分布特征,具有較好的找礦應(yīng)用效果。
[Abstract]:Fujian city of Zhangzhou province Pinghe county is located in the southern Wuyishan metallogenic belt, regional faults, Fu'an - Nanjing, Shanghang - NE trending deep faults NW trending deep faults through the sky in this area, and developed several NE trending and NW trending tectonic belt, at the same time, Huaan, Taining, Longyan, two SN to the fault zone and Xiamen Nanjing fault zone EW to directly affect the study area so as to form a very complex geological structure, and topography is also affected by tectonic activity. Has been initially identified with copper, molybdenum, iron, lead, zinc, gold and other metals and pyrophyllite, kaolinite, peat and other minerals found in the area. The metallogenic conditions of the regional advantages, prospecting potential, vegetation development, strong subtropical humid monsoon climate, is a typical area of vegetation cover, local Quaternary thick, undulating terrain, traditional field geological work conditions, very suitable for the use of fast effective and low cost method of remote sensing in vegetation covered area for geological prospecting. This paper combines remote sensing, botany, plant geochemistry, petrology and other related knowledge, systematic exploration in flat area and typical copper molybdenum mine (Zhong Teng, pan Chi copper molybdenum mine) and satellite image features and spectral characteristics of copper, molybdenum, lead and zinc polymetallic anomaly area and peripheral area of the natural landscape, the characteristics of the vegetation community, typical objects; by multi spectral image recognition and extraction of linear structure in the area, and then use fractal theory to analyze the relationship between the linear structure and spatial distribution of deposits; statistics of the copper molybdenum mine, the main ore-forming elements in the geochemical anomaly area above the rock, soil and vegetation and the element content in determining the characteristics of associated; copper molybdenum mine near the effective vegetation and indicative indicator elements at the same time, analyzed the spectral characteristics of mining area and mining area periphery common plants, found that Shows the advantage of the spectral reflectance of vegetation anomaly; inheritance of ore-forming material will rock, soil and vegetation, the vegetation spectral reflectance curve and aerial hyperspectral image anomaly in series, establish the relation model, inversion of high vegetation cover copper molybdenum mine remote sensing and geochemical features indicative of spatial distribution of element contents. It provides a new way of thinking for the prediction of metal deposits in the high vegetation cover area, which has good application value and popularization significance. This paper obtained the following results and understanding: linear structure interpretation from 1, within the area of epithermal deposit research and multi spectral remote sensing image has close correlation, quantitative linear structure analysis can be learned by statistical method of box dimension based on fractal theory, the linear structure in the area has statistical self the similarity of fractal dimension contour from linear structure statistical graph results, hydrothermal type occurrences have been found mostly in the high value area near the fractal dimension, the fractal dimension of two copper molybdenum ore values were 1.43 and 1.52 (Zhong Tengtong molybdenum mine) (Pan Chi copper molybdenum mine). The size of Fanshan (alum mine) the fractal dimension value is 1.37. The low value area or were found near the ore distribution. At the same time, we can see clearly in the 10 trend map of the fractal dimension of remote sensing linear structure. The ring high value area in the middle part coincides with the position of the clock ring structure in the ETM+ image. The ring structure is the largest volcanic organization in the area. Based on the above quantitative analysis, we can know that the low-temperature hydrothermal deposits or mineralization sites are often located in the areas where the fault structures are more developed and the spatial distribution is more complex. These regions with high linear structure and high spatial complexity are often the favorable places for ore hosting and ore hosting. 2, from a typical research area, analysis the common features of vegetation spectral reflectance curve can be in low temperature hydrothermal type copper molybdenum deposit (ore) or geochemical anomaly area and the periphery area of typical vegetation spectral analysis results in the waveform, red edge characteristics, chlorophyll absorption characteristics, namely water have great differences in vegetation index the characteristics, and the performance of the more uniform. The reflectance of vegetation leaf or canopy is lower than that of mining area, and the red edge position has shifted. There is "blue shift" or "red shift" phenomenon. Chlorophyll and water absorption characteristics are different. Meanwhile, there are obvious differences in vegetation index. Therefore, with the help of grapefruit tree, Dicranopteris linearis, orientale, grass in the region of typical spectral characteristics of vegetation analysis, clear vegetation affected the ore-forming elements underlying ore migration in the growth process, the metal elements in the leaves in vivo enrichment, affect the normal growth of vegetation, from water chlorophyll content and cell structure have changed, these changes lead to the waveform characteristics of the mining area and mining area periphery vegetation differences. From the final analysis results, and grapefruit tree dicranopterisdichotoma anomaly is more obvious, Blechnum the thatched effect is not obvious, therefore, the grapefruit trees and vegetation in the region as a dominant candidate pedata with effective indication. The test results of 3 elements in the study area, rock, soil and vegetation in that most of the main ore-forming elements in copper molybdenum mine or regional geochemical anomalies and associated elements were higher than the average content of periphery area or background, indicating the relevant elements of rock, soil and vegetation in mining area above the material has certain inheritance. Showing the geochemical anomaly of plant obviously. 4 elements in different organs of different vegetation or the same vegetation absorption aggregation ability of different vegetation in the study area the most common species of leaf elements accumulation ability in the stems, such as grapefruit tree, leaf Mo, Co and enrichment of W, Bi and Cu elements, the leaves of dicranopterisdichotoma in addition to the above elements including Zn and Pb, the stems found no enrichment of elements, but the stems of pomelo trees but the enrichment of Zn and Pb. 5. Contrast coefficient based on the content of vegetation elements
【學(xué)位授予單位】:中國(guó)地質(zhì)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:P627
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李曉露;林書(shū)本;;烏努格吐山銅鉬礦建設(shè)工程的測(cè)量保障[J];科技創(chuàng)新導(dǎo)報(bào);2010年06期
2 А.С.Фарамазян ,鄭秀中;蘇聯(lián)亞美尼亞贊格祖爾最主要銅鉬礦床的輝鉬礦中鋨的含量[J];地質(zhì)地球化學(xué);1975年11期
3 林翠芳;;電感耦合等離子體原子發(fā)射光譜法測(cè)定銅鉬礦中銅和鉬[J];冶金分析;2014年07期
4 張志軍;李繼業(yè);張翰奇;;華北地臺(tái)北緣銅鉬礦床地質(zhì)淺析[J];西部資源;2014年02期
5 卞育才;皖南麻姑山銅鉬礦床成因初探[J];江蘇地質(zhì);1995年01期
6 孫侃;邢娟;;烏努格吐山銅鉬礦水文地質(zhì)簡(jiǎn)要分析[J];黑龍江科技信息;2011年26期
7 紀(jì)宏偉;孫敬博;;新疆哈密地區(qū)赤湖銅鉬礦床特征和成礦時(shí)代探討[J];礦物學(xué)報(bào);2011年S1期
8 黎青;;注意深部的銅鉬礦床[J];地質(zhì)與勘探;1980年11期
9 高長(zhǎng)林 ,王振元 ,李意天;白乃廟銅鉬礦床成因的地球化學(xué)研究[J];地質(zhì)與勘探;1983年12期
10 王成輝;唐菊興;陳建平;郝金華;高一鳴;劉耀文;凡韜;章奇志;應(yīng)立娟;陳志皎;;西藏玉龍銅鉬礦同位素年代學(xué)研究[J];地質(zhì)學(xué)報(bào);2009年10期
相關(guān)會(huì)議論文 前7條
1 凌石生;尚衍波;;新疆某低品位銅鉬礦選礦工藝研究[A];復(fù)雜難處理礦石選礦技術(shù)——全國(guó)選礦學(xué)術(shù)會(huì)議論文集[C];2009年
2 賈麗娜;;云南省香格里拉縣銅廠(chǎng)溝銅鉬礦礦床地質(zhì)特征[A];中國(guó)礦物巖石地球化學(xué)學(xué)會(huì)第14屆學(xué)術(shù)年會(huì)論文摘要專(zhuān)輯[C];2013年
3 丁汝福;游軍;宋慈安;;新疆富蘊(yùn)縣希勒庫(kù)都克銅鉬礦床地球化學(xué)異常特征[A];中國(guó)礦物巖石地球化學(xué)學(xué)會(huì)第13屆學(xué)術(shù)年會(huì)論文集[C];2011年
4 游軍;丁汝福;宋慈安;;新疆富蘊(yùn)縣希勒庫(kù)都克銅鉬礦床構(gòu)造與成礦的關(guān)系[A];中國(guó)礦物巖石地球化學(xué)學(xué)會(huì)第13屆學(xué)術(shù)年會(huì)論文集[C];2011年
5 孟健寅;楊立強(qiáng);鄧軍;呂亮;高雪;;滇西北紅山銅鉬礦床輝鉬礦Re-Os同位素測(cè)年及其成礦意義[A];中國(guó)礦物巖石地球化學(xué)學(xué)會(huì)第14屆學(xué)術(shù)年會(huì)論文摘要專(zhuān)輯[C];2013年
6 栗亞芝;賈群子;宋忠寶;杜玉良;陳向陽(yáng);張雨蓮;;青海省納日貢瑪斑巖型銅鉬礦床成礦巖體的物質(zhì)來(lái)源[A];中國(guó)礦物巖石地球化學(xué)學(xué)會(huì)第14屆學(xué)術(shù)年會(huì)論文摘要專(zhuān)輯[C];2013年
7 張智慧;秦明;張旭;唐杰;翟東旭;;河南鎮(zhèn)平秋樹(shù)灣礦區(qū)銅鉬礦床地質(zhì)特征及深部找礦潛力分析[A];河南地球科學(xué)通報(bào)2008年卷(上冊(cè))[C];2008年
相關(guān)重要報(bào)紙文章 前10條
1 記者 江平 駐站記者 閆洪君;鑫天山百萬(wàn)噸水泥生產(chǎn)線(xiàn)和敖侖花銅鉬礦同日點(diǎn)火試車(chē)[N];赤峰日?qǐng)?bào);2008年
2 高雷;恩菲廣東封開(kāi)銅鉬礦可行性研究通過(guò)審查[N];中國(guó)有色金屬報(bào);2009年
3 記者 邵涌河;阿旗敖侖花銅鉬礦投入正常生產(chǎn)運(yùn)營(yíng)[N];赤峰日?qǐng)?bào);2009年
4 張桂英;東蘇旗準(zhǔn)蘇吉花銅鉬礦項(xiàng)目獲得自治區(qū)核準(zhǔn)[N];錫林郭勒日?qǐng)?bào);2010年
5 記者 班彥欽邋通訊員 郝偉;繁峙引資 35億簽下史上最大一單[N];山西日?qǐng)?bào);2008年
6 王冬永;江蘇銅山啟動(dòng)深部外圍找礦[N];中國(guó)礦業(yè)報(bào);2007年
7 吳廣;新選礦工藝助圓珠頂銅鉬礦選出高品位礦[N];地質(zhì)勘查導(dǎo)報(bào);2008年
8 記者 瓊瑋;中金地質(zhì)拿下大型銅鉬礦[N];中國(guó)黃金報(bào);2005年
9 記者 王高和 通訊員 喬偉;繁峙后峪銅鉬礦項(xiàng)目正式簽約[N];忻州日?qǐng)?bào);2008年
10 李瑋;烏努格吐山銅鉬礦勘探報(bào)告通過(guò)國(guó)家評(píng)審[N];中國(guó)有色金屬報(bào);2007年
相關(guān)博士學(xué)位論文 前3條
1 呂程;高植被覆蓋區(qū)銅鉬礦遙感植被地球化學(xué)特征提取[D];中國(guó)地質(zhì)大學(xué);2016年
2 劉有才;斑巖型銅鉬礦的浮選新藥劑與新工藝研究[D];中南大學(xué);2013年
3 俞娟;難選銅鉬礦浮選分離基礎(chǔ)及鉬提取新工藝研究[D];東北大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 李春風(fēng);內(nèi)蒙古八大關(guān)斑巖型銅鉬礦床地球化學(xué)特征及成因機(jī)制研究[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
2 鄭澤軍;安徽銅陵胡村南銅鉬礦床地質(zhì)和流體地球化學(xué)[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
3 孟德明;陜西省柞水—山陽(yáng)礦集區(qū)冷水溝銅鉬礦床地質(zhì)特征及找礦預(yù)測(cè)[D];長(zhǎng)安大學(xué);2015年
4 李寧;內(nèi)蒙古烏奴格吐山銅鉬礦成礦侵入巖特征及成礦時(shí)代[D];中國(guó)地質(zhì)大學(xué)(北京);2013年
5 蘇凱;內(nèi)蒙古某銅鉬礦選礦工藝可行性研究[D];吉林大學(xué);2015年
6 吳雙橋;某低品位難選斑巖型銅鉬礦銅鉬分離研究[D];江西理工大學(xué);2011年
7 鄧華波;東準(zhǔn)噶爾北部地區(qū)銅鉬礦床地質(zhì)-地球化學(xué)特征及成因研究[D];中國(guó)地質(zhì)大學(xué)(北京);2012年
8 王富春;青海三江北段納日貢瑪斑巖型銅鉬礦床勘查模型及外圍找礦預(yù)測(cè)研究[D];吉林大學(xué);2014年
9 張海心;內(nèi)蒙古烏奴格吐山銅鉬礦床地質(zhì)特征及成礦模式[D];吉林大學(xué);2006年
10 王秋霞;多寶山難選斑巖型銅鉬礦分離技術(shù)研究[D];中國(guó)地質(zhì)大學(xué);2004年
,本文編號(hào):1345943
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1345943.html