汽車(chē)門(mén)鎖閉鎖器小模數(shù)齒輪副嚙合性能的有限元研究
[Abstract]:The minor-to-digital gear pair for transmission in the automobile door lock latch is used for pairing the plastic gear and the metal gear, and the metal gear is a driving wheel. The gear pair not only has the advantages of light weight, vibration absorption, self-lubricating, and the like of the plastic gear, but also can improve the heat dissipation by using the good thermal conductivity of the metal material. However, the plastic elastic modulus is low, the thermal conductivity is poor, the coefficient of thermal expansion is large, the plastic gear is in the design, the application of the plastic gear does not have a uniform reference standard, and according to the metal gear, the large difference can be brought; and the analysis and research on the pair of gear pairs are relatively small. Therefore, it is of great theoretical and practical significance to make a systematic and effective analysis of the meshing performance of this kind of gear, and it also has a high economic effect for the enterprises applying such gear pair, and it is also important to put forward the principle of the secondary design of the gear and the research method. In this paper, the small-modulus gear pair in a car door lock latch is used as the research object. First, the gear pair model is set up in the CAXA electronic map, and then the meshing performance of the gear pair is analyzed and researched by using the finite element analysis theory and the ANSYS2.0 finite element analysis software. A. Main work, such as Lower: (1) Contact finite element analysis of gear pair: set up the accurate contact pressure model of the gear pair, and study the contact stress and strain distribution of the gear pair in one meshing period, and sum up the points of stress and strain within one meshing period The rule of cloth is that the maximum contact stress of the gear pair is 4.197 MPa, the strain is 7.035. m u.m, and the maximum stress and strain occur when the gear pair is in mesh with the node (2) The finite element analysis of the temperature field of the main body of the plastic gear: the generation and propagation of heat in the gear pair transmission is discussed in detail. The basic equations of some definition and the thermodynamic finite element analysis of the gear pair are introduced in detail, and the gear pair is obtained. Friction heat flow; a single-tooth finite element model of a plastic gear is established; the maximum temperature of the plastic gear at the time of operation is 42.447 DEG C, the temperature rise reaches 7.447 DEG C, and the highest temperature occurs in the vicinity of the pitch circle, the friction heat distributed by the metal gear accounts for most of the total friction heat flow, as at the point of engagement at the node (3) On the basis of the contact analysis and thermal performance analysis, the thermal-structural coupling performance analysis of the gear pair is carried out when the node is engaged, and the thermal expansion coefficient and the elastic modulus of the plastic material (decrease with the temperature increase) are discussed to the gear pair The influence of the meshing performance is that the contact stress is the largest (10.449 MPa) in the coupling analysis considering the two factors, the coupling analysis with only the influence of the elastic modulus is the minimum (3.950MPa), and the main factor affecting the coupling performance of the gear is the heat of the plastic gear (4) The finite element analysis of the contact fatigue life of the plastic gear: the failure mode and the failure mechanism of the plastic gear are discussed. The contact fatigue life of the gear pair at the node is analyzed, and the fatigue life of the gear teeth of the plastic gear is 52130 (less than the actual). 60,000 times), while the cumulative fatigue factor is 1 ............................................................................................................................................................ In general, the contact strength and heat resistance of the gear pair can meet the working requirements and have greater redundancy; and the contact fatigue performance can not meet the working requirements, and the contact fatigue life can not meet the design requirement,
【學(xué)位授予單位】:南京農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:U463.854;TH132.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉廣建,李二英;超高分子量聚乙烯在軸套、軸承上的應(yīng)用[J];工程塑料應(yīng)用;1995年05期
2 劉廣建,徐俊艷;塑料齒輪失效形式及機(jī)理分析[J];工程塑料應(yīng)用;1996年01期
3 劉廣建;塑料齒輪的結(jié)構(gòu)設(shè)計(jì)[J];工程塑料應(yīng)用;1998年01期
4 郝瑞賢;李元宗;;對(duì)我國(guó)塑料齒輪發(fā)展的一些思考[J];工程塑料應(yīng)用;2007年03期
5 許艷玲;張保;許驥;;基于ANSYS的6110曲軸疲勞分析[J];傳動(dòng)技術(shù);2009年01期
6 孫曉偉,毛昆;塑料齒輪傳動(dòng)磨損特點(diǎn)[J];材料科學(xué)與工程;1999年03期
7 黃亞玲;秦大同;羅同云;龔為倫;;基于ANSYS的斜齒輪接觸非線性有限元分析[J];四川兵工學(xué)報(bào);2006年04期
8 劉光新;影響塑料齒輪使用壽命的因素分析[J];常州信息職業(yè)技術(shù)學(xué)院學(xué)報(bào);2005年03期
9 孫建國(guó);閔陽(yáng)春;;獨(dú)立通風(fēng)型SS9電力機(jī)車(chē)齒輪溫度場(chǎng)分析[J];電力機(jī)車(chē)與城軌車(chē)輛;2009年05期
10 徐佩弦;;塑料齒輪抗彎疲勞強(qiáng)度與摩擦磨損[J];電子工藝技術(shù);1990年03期
相關(guān)博士學(xué)位論文 前1條
1 李紹彬;高速重載齒輪傳動(dòng)熱彈變形及非線性耦合動(dòng)力學(xué)研究[D];重慶大學(xué);2004年
相關(guān)碩士學(xué)位論文 前9條
1 邢志偉;超臨界/超超臨界火電機(jī)組齒輪傳動(dòng)系統(tǒng)穩(wěn)態(tài)熱分析[D];機(jī)械科學(xué)研究總院;2011年
2 康凱;塑料齒輪強(qiáng)度研究[D];北京化工大學(xué);2001年
3 李磊;塑料蝸輪與鋼制蝸桿的嚙合性能研究[D];同濟(jì)大學(xué);2007年
4 汝艷;低速重載齒輪本體溫度場(chǎng)的研究[D];合肥工業(yè)大學(xué);2007年
5 王婧;塑料齒輪松馳時(shí)間研究[D];北京交通大學(xué);2008年
6 劉淞;混雜填充尼龍6復(fù)合材料機(jī)械性能研究[D];南京農(nóng)業(yè)大學(xué);2008年
7 李卓富;轎車(chē)變速箱低速檔齒輪動(dòng)力學(xué)仿真及熱分析[D];哈爾濱工業(yè)大學(xué);2009年
8 陳磊;基于ANSYS的行星減速器溫度場(chǎng)分析[D];南京航空航天大學(xué);2009年
9 胡艷如;齒輪噴藥泵的有限元分析及優(yōu)化[D];西北農(nóng)林科技大學(xué);2010年
,本文編號(hào):2503285
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2503285.html