天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 機(jī)械論文 >

汽車(chē)門(mén)鎖閉鎖器小模數(shù)齒輪副嚙合性能的有限元研究

發(fā)布時(shí)間:2019-06-20 14:14
【摘要】:汽車(chē)門(mén)鎖閉鎖器中傳動(dòng)用的小模數(shù)齒輪副多數(shù)是將塑料齒輪與金屬齒輪配對(duì)使用,且多以金屬齒輪為主動(dòng)輪。此類齒輪副不僅擁有塑料齒輪的重量輕、能夠吸振、自潤(rùn)滑等優(yōu)勢(shì),還可以運(yùn)用金屬材料良好的導(dǎo)熱性能改善其散熱。然而塑料彈性模量低,熱傳導(dǎo)性差,熱膨脹系數(shù)大;塑料齒輪在設(shè)計(jì)、應(yīng)用上還沒(méi)有一個(gè)統(tǒng)一的參照標(biāo)準(zhǔn),而依據(jù)金屬齒輪又會(huì)帶來(lái)較大的差異性;針對(duì)此類齒輪副的分析研究也相對(duì)較少。 所以,對(duì)此類齒輪副嚙合性能進(jìn)行系統(tǒng)而有效的分析,有著較高的理論和實(shí)踐意義,對(duì)于應(yīng)用此類齒輪副的企業(yè)具也有較高的經(jīng)濟(jì)效應(yīng),對(duì)齒輪副設(shè)計(jì)準(zhǔn)則與研究方法的提出也具有重要意義。為此,本文以某汽車(chē)門(mén)鎖閉鎖器中的小模數(shù)齒輪副為研究對(duì)象,首先在CAXA電子圖版中建立齒輪副模型,之后運(yùn)用有限元分析理論和ANSYS12.0有限元分析軟件對(duì)齒輪副的嚙合性能進(jìn)行較為全面的分析與研究。主要工作如下: (1)齒輪副的接觸有限元分析:建立齒輪副精確的接觸壓力模型,研究齒輪副在一個(gè)嚙合周期內(nèi)的接觸應(yīng)力及應(yīng)變分布,總結(jié)應(yīng)力與應(yīng)變?cè)谝粋(gè)嚙合周期內(nèi)的分布規(guī)律;得到齒輪副最大接觸應(yīng)力為4.197MPa、應(yīng)變?yōu)?.035μm,且最大應(yīng)力與應(yīng)變都發(fā)生在齒輪副在節(jié)點(diǎn)嚙合時(shí)等結(jié)論。 (2)塑料齒輪的本體溫度場(chǎng)有限元分析:詳細(xì)地討論了齒輪副傳動(dòng)過(guò)程中熱量的產(chǎn)生和傳播,系統(tǒng)地介紹了傳熱學(xué)的一些定義和熱力學(xué)有限元分析的基本方程;計(jì)算得出了齒輪副的摩擦熱流量;建立了塑料齒輪的單齒有限元模型;得到塑料齒輪在工作時(shí)的最高溫度為42.447℃、溫升達(dá)到7.447℃、最高溫度出現(xiàn)在節(jié)圓附近、金屬齒輪分配的摩擦熱量占總摩擦熱流量的絕大部分(如在節(jié)點(diǎn)處嚙合時(shí)達(dá)到91%)等結(jié)論。 (3)在接觸分析與熱性能分析的基礎(chǔ)上,對(duì)齒輪副在節(jié)點(diǎn)嚙合時(shí)進(jìn)行熱-結(jié)構(gòu)耦合性能分析,并討論塑料材料的熱膨脹系數(shù)與彈性模量(隨溫度升高而降低)對(duì)齒輪副嚙合性能的影響;得到接觸應(yīng)力在考慮兩種因素的耦合分析中最大(10.449MPa)、在僅考彈性模量影響的耦合分析最小(3.950MPa)、影響齒輪副耦合性能的主要因素是塑料齒輪的熱膨脹系數(shù)等結(jié)論。 (4)塑料齒輪的接觸疲勞壽命有限元分析:探討了塑料齒輪的失效形式和破壞機(jī)理;分析了齒輪副在節(jié)點(diǎn)處嚙合時(shí)的接觸疲勞壽命,得到塑料齒輪輪齒的疲勞壽命為52130次(小于實(shí)際要求的60000次),而累計(jì)疲勞系數(shù)為1.91844等結(jié)論。 (5)對(duì)齒輪副進(jìn)行了耐久實(shí)驗(yàn):驗(yàn)證有限元分析結(jié)果的正確性與可靠性;對(duì)齒輪副優(yōu)化的方向進(jìn)行論述,包括齒輪副尺寸參數(shù)的優(yōu)化、塑料齒輪材料的增強(qiáng)和改性、更換性能更優(yōu)的材料。 總之,齒輪副的接觸強(qiáng)度和耐熱性能均能滿足工作要求,而且還具有較大的冗余度;而接觸疲勞性能卻滿足不了工作需要、接觸疲勞壽命達(dá)不到設(shè)計(jì)的要求,這也是該齒輪副失效的主要原因之一。
[Abstract]:The minor-to-digital gear pair for transmission in the automobile door lock latch is used for pairing the plastic gear and the metal gear, and the metal gear is a driving wheel. The gear pair not only has the advantages of light weight, vibration absorption, self-lubricating, and the like of the plastic gear, but also can improve the heat dissipation by using the good thermal conductivity of the metal material. However, the plastic elastic modulus is low, the thermal conductivity is poor, the coefficient of thermal expansion is large, the plastic gear is in the design, the application of the plastic gear does not have a uniform reference standard, and according to the metal gear, the large difference can be brought; and the analysis and research on the pair of gear pairs are relatively small. Therefore, it is of great theoretical and practical significance to make a systematic and effective analysis of the meshing performance of this kind of gear, and it also has a high economic effect for the enterprises applying such gear pair, and it is also important to put forward the principle of the secondary design of the gear and the research method. In this paper, the small-modulus gear pair in a car door lock latch is used as the research object. First, the gear pair model is set up in the CAXA electronic map, and then the meshing performance of the gear pair is analyzed and researched by using the finite element analysis theory and the ANSYS2.0 finite element analysis software. A. Main work, such as Lower: (1) Contact finite element analysis of gear pair: set up the accurate contact pressure model of the gear pair, and study the contact stress and strain distribution of the gear pair in one meshing period, and sum up the points of stress and strain within one meshing period The rule of cloth is that the maximum contact stress of the gear pair is 4.197 MPa, the strain is 7.035. m u.m, and the maximum stress and strain occur when the gear pair is in mesh with the node (2) The finite element analysis of the temperature field of the main body of the plastic gear: the generation and propagation of heat in the gear pair transmission is discussed in detail. The basic equations of some definition and the thermodynamic finite element analysis of the gear pair are introduced in detail, and the gear pair is obtained. Friction heat flow; a single-tooth finite element model of a plastic gear is established; the maximum temperature of the plastic gear at the time of operation is 42.447 DEG C, the temperature rise reaches 7.447 DEG C, and the highest temperature occurs in the vicinity of the pitch circle, the friction heat distributed by the metal gear accounts for most of the total friction heat flow, as at the point of engagement at the node (3) On the basis of the contact analysis and thermal performance analysis, the thermal-structural coupling performance analysis of the gear pair is carried out when the node is engaged, and the thermal expansion coefficient and the elastic modulus of the plastic material (decrease with the temperature increase) are discussed to the gear pair The influence of the meshing performance is that the contact stress is the largest (10.449 MPa) in the coupling analysis considering the two factors, the coupling analysis with only the influence of the elastic modulus is the minimum (3.950MPa), and the main factor affecting the coupling performance of the gear is the heat of the plastic gear (4) The finite element analysis of the contact fatigue life of the plastic gear: the failure mode and the failure mechanism of the plastic gear are discussed. The contact fatigue life of the gear pair at the node is analyzed, and the fatigue life of the gear teeth of the plastic gear is 52130 (less than the actual). 60,000 times), while the cumulative fatigue factor is 1 ............................................................................................................................................................ In general, the contact strength and heat resistance of the gear pair can meet the working requirements and have greater redundancy; and the contact fatigue performance can not meet the working requirements, and the contact fatigue life can not meet the design requirement,
【學(xué)位授予單位】:南京農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:U463.854;TH132.41

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉廣建,李二英;超高分子量聚乙烯在軸套、軸承上的應(yīng)用[J];工程塑料應(yīng)用;1995年05期

2 劉廣建,徐俊艷;塑料齒輪失效形式及機(jī)理分析[J];工程塑料應(yīng)用;1996年01期

3 劉廣建;塑料齒輪的結(jié)構(gòu)設(shè)計(jì)[J];工程塑料應(yīng)用;1998年01期

4 郝瑞賢;李元宗;;對(duì)我國(guó)塑料齒輪發(fā)展的一些思考[J];工程塑料應(yīng)用;2007年03期

5 許艷玲;張保;許驥;;基于ANSYS的6110曲軸疲勞分析[J];傳動(dòng)技術(shù);2009年01期

6 孫曉偉,毛昆;塑料齒輪傳動(dòng)磨損特點(diǎn)[J];材料科學(xué)與工程;1999年03期

7 黃亞玲;秦大同;羅同云;龔為倫;;基于ANSYS的斜齒輪接觸非線性有限元分析[J];四川兵工學(xué)報(bào);2006年04期

8 劉光新;影響塑料齒輪使用壽命的因素分析[J];常州信息職業(yè)技術(shù)學(xué)院學(xué)報(bào);2005年03期

9 孫建國(guó);閔陽(yáng)春;;獨(dú)立通風(fēng)型SS9電力機(jī)車(chē)齒輪溫度場(chǎng)分析[J];電力機(jī)車(chē)與城軌車(chē)輛;2009年05期

10 徐佩弦;;塑料齒輪抗彎疲勞強(qiáng)度與摩擦磨損[J];電子工藝技術(shù);1990年03期

相關(guān)博士學(xué)位論文 前1條

1 李紹彬;高速重載齒輪傳動(dòng)熱彈變形及非線性耦合動(dòng)力學(xué)研究[D];重慶大學(xué);2004年

相關(guān)碩士學(xué)位論文 前9條

1 邢志偉;超臨界/超超臨界火電機(jī)組齒輪傳動(dòng)系統(tǒng)穩(wěn)態(tài)熱分析[D];機(jī)械科學(xué)研究總院;2011年

2 康凱;塑料齒輪強(qiáng)度研究[D];北京化工大學(xué);2001年

3 李磊;塑料蝸輪與鋼制蝸桿的嚙合性能研究[D];同濟(jì)大學(xué);2007年

4 汝艷;低速重載齒輪本體溫度場(chǎng)的研究[D];合肥工業(yè)大學(xué);2007年

5 王婧;塑料齒輪松馳時(shí)間研究[D];北京交通大學(xué);2008年

6 劉淞;混雜填充尼龍6復(fù)合材料機(jī)械性能研究[D];南京農(nóng)業(yè)大學(xué);2008年

7 李卓富;轎車(chē)變速箱低速檔齒輪動(dòng)力學(xué)仿真及熱分析[D];哈爾濱工業(yè)大學(xué);2009年

8 陳磊;基于ANSYS的行星減速器溫度場(chǎng)分析[D];南京航空航天大學(xué);2009年

9 胡艷如;齒輪噴藥泵的有限元分析及優(yōu)化[D];西北農(nóng)林科技大學(xué);2010年



本文編號(hào):2503285

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2503285.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e4acd***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com