超(超)臨界蒸汽疏水閥空化與熱流固耦合研究
[Abstract]:Valve, as the key supporting product of super (super) critical thermal power unit, is one of the important equipment to ensure the safety and economic operation of the unit. 90% of the conventional thermal power high-end valves in China rely on import for a long time, but the traditional physical prototype test and static empirical formula calculation and design methods can not meet the design requirements of high-parameter valves. With the rapid development of computer aided design technology and computer performance, it is possible to solve the main problems of high temperature and high pressure differential valves by numerical simulation. The numerical simulation method can be used to predict the parameters that are difficult to measure in the experiment and the static calculation and the problems not considered in the experiment. Without a large number of experiments, the production cost of the valve can be significantly reduced, the development cycle can be shortened, and the valve structure and performance can be optimized. As one of the high-end valves imported for a long time, the most important problem that it is difficult to realize localization is that the internal cavitation flow characteristics of the drain valve need to be deeply studied: the anti-cavitation elements are deeply studied. Effectively inhibit the occurrence of cavitation; Solve the problem of material selection and strength of valve body. In this paper, the following research is carried out to provide reference for the design of other high temperature and high pressure differential valves. The main contents are as follows: 1) the numerical simulation theory of super critical hydrophobic valve is studied, and a three-dimensional model is established to simulate the cavitation flow in the valve, with emphasis on the cavitation flow characteristics in the valve and the pressure in the valve. The distribution maps of physical quantities such as velocity and liquid-vapor volume distribution predict the occurrence of cavitation. The effects of different opening, pressure inlet, pressure outlet and sealing surface angle on the degree, area and range of cavitation are simulated and studied. 2) the series, opening area, interstage gap and thickness of the multistage pressure reduction sleeve are studied theoretically. The parameters of multistage sleeve anti-cavitation throttling element, such as aperture size, interstage gap and opening type, are studied by means of theoretical calculation and numerical simulation. The influence of interstage diversion slot structure on the flow field in the valve, especially on the cavitation flow, is studied in detail. 3) the geometric model of the coupling between the main overcurrent pressure components of the hydrophobic valve and the fluid medium is established, and the numerical analysis of the thermal-fluid-solid coupling is carried out by using the ANYSY Workbench platform. The temperature field, thermal stress and deformation of the main components of the hydrophobic valve under working condition are studied, and the strength of the hydrophobic valve in the closed state is also studied.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TH134;TM621
【參考文獻】
相關(guān)期刊論文 前10條
1 鐘世梁,黃榮國,許冰;600MW機組高壓旁路減溫減壓閥熱應(yīng)力計算及壽命估算[J];動力工程;2005年02期
2 陶興鳳,周愛民;電站閥門現(xiàn)狀分析與改進思路[J];電站輔機;2003年04期
3 張淑萍,黃榮國;300MW汽機旁路系統(tǒng)高壓蒸汽變換閥閥體應(yīng)力計算[J];電站系統(tǒng)工程;2000年05期
4 萬勝軍;電站調(diào)節(jié)閥汽蝕現(xiàn)象的分析與研究[J];閥門;2003年01期
5 顧成果;;套筒調(diào)節(jié)閥套筒結(jié)構(gòu)的設(shè)計與分析[J];閥門;2010年04期
6 陳躍;韓建民;潘利科;李志強;楊智勇;;消防閥閥體強度模擬計算[J];閥門;2010年05期
7 甘加業(yè);薛永飛;吳克啟;;混流泵葉輪內(nèi)空化流動的數(shù)值計算[J];工程熱物理學(xué)報;2007年S1期
8 洪梅;鍋爐管路中節(jié)流孔板和流量孔板的設(shè)計[J];鍋爐技術(shù);2005年05期
9 冀宏;李亞;張繼環(huán);王建森;丁大力;;液壓閥口氣穴流動的平面觀測方法[J];蘭州理工大學(xué)學(xué)報;2010年05期
10 王璋奇,丁祝順,彭震中;電站閥門面臨的問題及對策探討[J];華北電力技術(shù);2000年05期
相關(guān)博士學(xué)位論文 前3條
1 夏冬生;柴油機氣缸套冷卻水空化流的數(shù)值模擬[D];大連海事大學(xué);2011年
2 李忠;軸流泵內(nèi)部空化流動的研究[D];江蘇大學(xué);2011年
3 王勇;離心泵空化及其誘導(dǎo)振動噪聲研究[D];江蘇大學(xué);2011年
相關(guān)碩士學(xué)位論文 前8條
1 劉金超;600MW超臨界機組高壓旁路閥門國產(chǎn)化研發(fā)[D];哈爾濱理工大學(xué);2010年
2 張玉們;核電安全閥內(nèi)臨界流和氣穴流的三維定常數(shù)值模擬[D];華東理工大學(xué);2012年
3 梁木子;發(fā)電站蒸汽管道支管及接管座溫度場和熱應(yīng)力分析[D];上海交通大學(xué);2007年
4 張雪;水輪發(fā)電機流固熱耦合仿真分析及通風(fēng)散熱參數(shù)研究[D];天津大學(xué);2007年
5 李玉潔;電動調(diào)節(jié)閥的三維穩(wěn)態(tài)熱分析及熱強度計算[D];北方工業(yè)大學(xué);2009年
6 趙希楓;基于CFD技術(shù)改善離心泵內(nèi)部空化性能的研究[D];蘭州理工大學(xué);2009年
7 尚翠霞;控制閥流固耦合特性的研究[D];山東大學(xué);2009年
8 翟霄;閥體的應(yīng)力分類與強度評定[D];蘭州理工大學(xué);2010年
,本文編號:2493023
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2493023.html