大功率多元液力調(diào)速系統(tǒng)性能研究
[Abstract]:Rotating machinery, such as fan and water pump, is a widely used power equipment in the fields of metallurgy, mine, electric power, etc., and its electric energy consumption occupies a great proportion of China's industrial electricity consumption. As long as the variable-speed regulation and operation of the fan and the water pump can save energy, the research of the variable-speed regulation technology is of great significance to the high-efficiency utilization of energy. At present, the power machine in the industrial production is developed in the direction of high power and large capacity, and the operating power of the fan water pump is also increased to several thousand to several thousand kilowatts, but the existing speed regulation technology is difficult to realize the wide speed regulation range and high efficiency transmission of the transmission system under the condition of high power and large capacity transmission power. In this background, this paper studies the variable-speed regulation of high-power fan water pump, and probes into the new technical solution, which is of great significance to the energy-saving, energy-saving and energy-saving of large-scale rotating machinery used in power production in China, and to improve the safety and reliability of equipment operation. This paper is supported by the "Research on High-power and Multi-element Compound Hydraulic Speed-regulating System" of the basic scientific research operating expense project of Jilin University. The paper studies a high-power multi-component hydraulic speed-regulating system with constant-speed input and variable-speed output. The system is suitable for the variable-speed regulation and operation of high-power pump and fan. The multi-element hydraulic speed regulation system is based on the principle of power split transmission, and has the characteristics of large transmission power, wide speed regulation range and high transmission efficiency. The research work and conclusion about the key problems such as the transmission system model, the power analysis of the speed-regulating system, the adjustable guide vane and the output characteristic of the system are as follows: (1) Two transmission systems based on the principle of power split transmission are analyzed In this case, the transmission mode and the single-motor-driven transmission mode of the double-motor are driven in parallel, and the respective states of the two modes are analyzed. In this paper, the transmission model of the multi-element hydraulic speed regulation system based on the power split transmission principle is put forward, and the different working stages of the multi-element hydraulic speed-regulating system are briefly described. Analysis of the power flow direction of two rows of planetary gear train and guide vane adjustable torque converter by using the node method of planetary gear train power flow analysis The relationship between the speed, torque and power of the fixed planetary gear train and the rotating planetary gear train is derived, and the speed, torque and power relation of the pump wheel and the turbine of the variable torque converter of the guide vane are obtained, and the efficiency of the speed regulation system is given. The key hydraulic element _ guide vane adjustable hydraulic system in the speed-regulating system is designed by using the similar method. The torque converter is designed to complete the key links such as the cycle circle and the blade of the torque converter, and the D = 710 mm adjustable torque converter is obtained. The flow field calculation model is established for the designed guide vane adjustable torque converter, and the flow field of the adjustable torque converter with different opening degrees is simulated by the CFD method, and the internal flow field characteristics and the external rotation of the torque converter are predicted. In this paper, the performance of the speed-regulating fluid coupling and the hydraulic speed reducer is studied by means of numerical simulation, and the original characteristics of the speed-regulating fluid coupling and the system of the hydraulic speed reducer are analyzed. (3) Based on the calculation of the original characteristic of the fluid coupling, the output characteristic of the low-speed section speed-regulating system under different liquid-filling rate is predicted, and the output characteristic of the high-speed section hydraulic speed-regulating system on the basis of the calculation of the characteristic of the adjustable torque converter is completed. The relationship between the opening degree of the guide vane and the output characteristic of the system is studied. With the increase of the opening of the guide vane, the output speed and the torque of the speed-regulating system are increased, and the power and the hydraulic power of the torque converter account for the input power. The ratio is increased. At the same time, the characteristic parameters of the variable torque converter of the guide vane in the speed regulation process are studied with the opening degree. The influence of the characteristic parameters of the fixed planetary gear on the high-efficiency section range of the hydraulic speed-regulating system is analyzed. When the characteristic parameters of the fixed planetary gear are increased, the high-efficiency section of the speed-regulating system is low The speed-regulating system of the original design is higher in the speed-regulating range than the speed-regulating system of the original design compared with the speed-regulating system after changing the characteristic parameters and the efficiency curve of the load regulation of the centrifugal fan by the speed regulation system and the fluid coupling is finally compared, the speed regulation of the hydraulic speed regulation system can be used for realizing high-efficiency transmission in a wider speed regulation range,
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH137.332
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李志;;裝載機(jī)變速器故障及排除[J];甘肅冶金;2011年04期
2 孫大平;;2010款雷克薩斯RX270新技術(shù)剖析(四)[J];汽車維修技師;2011年07期
3 鄭中;;雪佛蘭科邁羅新技術(shù)剖析(三)[J];汽車維修技師;2011年07期
4 司文;;SGA3722液力機(jī)械傳動機(jī)構(gòu)油溫過高故障原因及解決措施[J];機(jī)械研究與應(yīng)用;2011年03期
5 張綱;蘇丁;;自動變速器故障診斷試驗(yàn)分析[J];汽車運(yùn)用;2011年09期
6 李緒進(jìn);;2007款日產(chǎn)驪威冷車有時起步不走[J];汽車維修技師;2011年07期
7 楊曉芳;;別克轎車發(fā)動機(jī)常見噪音診斷及排除[J];大眾科技;2011年08期
8 王濤;邳銳;劉陽江;黃綿劍;;旋轉(zhuǎn)打開式散熱器在裝載機(jī)上的應(yīng)用[J];工程機(jī)械;2011年09期
9 姜楠;;通用6T40E變速器控制電路分析[J];汽車維修與保養(yǎng);2011年09期
10 王憲文;王宏波;;2009款奔騰B50自動變速器換擋沖擊[J];汽車維修技師;2011年09期
相關(guān)會議論文 前10條
1 陳紀(jì)新;;裝卸運(yùn)輸機(jī)械中液力變矩器的應(yīng)用[A];上海物流工程學(xué)會2003’論文集[C];2003年
2 花勝利;;高原型推土機(jī)動力系統(tǒng)的合理匹配[A];2003年內(nèi)蒙古自治區(qū)自然科學(xué)學(xué)術(shù)年會優(yōu)秀論文集[C];2003年
3 李樹生;;新型柴油機(jī)偶合器機(jī)組在石油鉆機(jī)上的應(yīng)用[A];2004年石油裝備年會暨慶祝江漢機(jī)械研究所建所40周年學(xué)術(shù)研討會論文集[C];2004年
4 曾潔;張麗艷;李桂林;;車用自動變速器檢測實(shí)驗(yàn)裝置的解決方案[A];第25屆中國控制會議論文集(中冊)[C];2006年
5 楊乃喬;;液力傳動油的現(xiàn)狀與發(fā)展[A];液壓(液力)用油品質(zhì)及污染控制技術(shù)論文集[C];2004年
6 ;Voith福伊特DIWA自動變速器在南美快速公交(BRT)中的應(yīng)用[A];中國巴士快速交通行動大會會議資料[C];2005年
7 陳星;陳樹國;;如何評價內(nèi)燃平衡重式叉車[A];中國機(jī)械工程學(xué)會物料搬運(yùn)專業(yè)學(xué)會第三屆年會論文集[C];1988年
8 薛佳穎;陳祖國;;提高裝載機(jī)變速泵及吸油系統(tǒng)的吸油能力[A];福建省科協(xié)第五屆學(xué)術(shù)年會“依靠科技進(jìn)步 促進(jìn)農(nóng)業(yè)機(jī)械化”分會場論文集[C];2005年
9 米合允;王彤;萬德玉;;對發(fā)展我國石油鉆機(jī)柴油機(jī)的建議[A];面向21世紀(jì)的科技進(jìn)步與社會經(jīng)濟(jì)發(fā)展(下冊)[C];1999年
10 張鵬;許純新;朱振宇;;輪式裝載機(jī)模糊自動變速技術(shù)的研究[A];中國工程機(jī)械學(xué)會2003年年會論文集[C];2003年
相關(guān)重要報紙文章 前10條
1 所宣;七一所變矩器首進(jìn)俄羅斯[N];中國船舶報;2007年
2 李川;巧發(fā)明 大受益[N];中國信息報;2008年
3 崔保運(yùn);山推液變廠首季營銷創(chuàng)紀(jì)錄[N];中國工業(yè)報;2006年
4 曲洋;巧發(fā)明 大受益[N];大眾科技報;2009年
5 王冀;戴-克開發(fā)出7速自動變速器[N];中國汽車報;2003年
6 河北省秦皇島港務(wù)集團(tuán)有限公司 周曉貴;KLD85ZIV型裝載機(jī)變速器的拆檢[N];中國建材報;2007年
7 證券時報記者 張棟邋張旭升;航天動力 等待猜想變成現(xiàn)實(shí)[N];證券時報;2008年
8 霍歷柯;光明“威肯”打造泰安叉車旗艦[N];現(xiàn)代物流報;2008年
9 記者 劉泓波邋通訊員 王永剛;大功率柴油機(jī)耦合器機(jī)組節(jié)油又高效[N];中國石油報;2008年
10 本報記者 張翼;ZF第30萬臺Ecomat變速箱下線[N];機(jī)電商報;2007年
相關(guān)博士學(xué)位論文 前10條
1 張?zhí)?越野汽車液力變矩器和機(jī)械自動變速系統(tǒng)的控制理論與試驗(yàn)[D];吉林大學(xué);2004年
2 姚懷新;工程車輛液壓動力學(xué)關(guān)鍵問題的理論研究與試驗(yàn)臺建設(shè)[D];長安大學(xué);2006年
3 洪濤;工程機(jī)械自動變速理論與控制系統(tǒng)研究[D];同濟(jì)大學(xué);2007年
4 崔功杰;工程車輛三參數(shù)最佳換擋規(guī)律及控制方法研究[D];吉林大學(xué);2009年
5 韓順杰;基于支持向量機(jī)的工程車輛自動變速方法研究[D];吉林大學(xué);2009年
6 趙克利;提高工程車輛智能變速性能的綜合控制研究[D];吉林大學(xué);2004年
7 楊亞聯(lián);金屬帶無級自動變速傳動的關(guān)鍵問題研究[D];重慶大學(xué);2002年
8 朱振宇;工程車輛自動變速智能控制系統(tǒng)試驗(yàn)研究[D];吉林大學(xué);2004年
9 胡建軍;汽車無級變速傳動系統(tǒng)建模、仿真及其匹配控制策略研究[D];重慶大學(xué);2001年
10 郝允志;無級變速器控制系統(tǒng)與硬件在環(huán)仿真研究[D];重慶大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 杜魏魏;風(fēng)力發(fā)電可變導(dǎo)葉液力機(jī)械調(diào)速裝置研究[D];吉林大學(xué);2011年
2 韓瑜;大功率多元液力調(diào)速系統(tǒng)性能研究[D];吉林大學(xué);2012年
3 杜洋;心外科與心內(nèi)科治療心房顫動的療效評價[D];吉林大學(xué);2012年
4 楊國朝;基于CFD的C5000變矩器內(nèi)部流場分析[D];鄭州大學(xué);2010年
5 齊迎春;數(shù)值模擬技術(shù)在液力變矩器流場分析中的應(yīng)用[D];吉林大學(xué);2004年
6 高冬梅;液力變矩器性能試驗(yàn)計算機(jī)測控系統(tǒng)的研制[D];中國農(nóng)業(yè)大學(xué);2005年
7 杜洋;基于AMESim的裝載機(jī)液力傳動匹配的研究與特性分析[D];吉林大學(xué);2012年
8 甄波;液力變矩器膨脹試驗(yàn)機(jī)自動測試系統(tǒng)的開發(fā)[D];浙江大學(xué);2002年
9 李勤;4T65E型液力變矩器的變形仿真研究[D];浙江大學(xué);2003年
10 熊欣;基于虛擬制造的液力變矩器設(shè)計與開發(fā)[D];武漢理工大學(xué);2004年
本文編號:2477994
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2477994.html