并聯(lián)機構位置正解的自適應差分進化算法
發(fā)布時間:2019-05-06 08:03
【摘要】:根據(jù)桿長約束條件,建立求6自由度一般6-SPS并聯(lián)機構位置正解的無約束優(yōu)化模型,再應用差分進化(Differential evolution,DE)算法求解該問題。針對基本DE算法可能出現(xiàn)進化停滯或陷入局部極值區(qū)域的缺點,提出一種引入新個體的自適應策略,以增強算法全局優(yōu)化性能。將引入新個體的自適應策略融入DE算法,并使用混合變異算子及基于三角函數(shù)擾動的縮放因子和交叉因子,形成自適應差分進化(Adaptive DE,ADE)算法。數(shù)值結果表明,對于一般6-SPS并聯(lián)機構正運動學分析問題,ADE算法能以較少計算開銷求出全部高精度位置正解。通過與基本DE算法、自適應變異粒子群算法和改進人工蜂群算法比較,驗證了ADE算法的收斂精度和計算穩(wěn)健性指標優(yōu)于對比算法。
[Abstract]:According to the constraint condition of bar length, an unconstrained optimization model for solving the forward position solution of 6-DOF general 6-SPS parallel mechanism is established, and then the differential evolution (Differential evolution,DE) algorithm is applied to solve the problem. In order to improve the global optimization performance of the basic DE algorithm, an adaptive strategy is proposed to improve the global optimization performance of the algorithm, which may lead to the stagnation of evolution or fall into the region of local extremum. The adaptive differential evolution (Adaptive DE,ADE) algorithm is formed by introducing the adaptive strategy of new individuals into the DE algorithm and using hybrid mutation operator and scaling factor and cross factor based on trigonometric function disturbance to form an adaptive differential evolution (Adaptive DE,ADE) algorithm. The numerical results show that for the forward kinematics analysis of the general 6-SPS parallel mechanism, the ADE algorithm can obtain all high-precision forward position solutions with less computational overhead. Compared with the basic DE algorithm, the adaptive mutation particle swarm optimization algorithm and the improved artificial bee swarm algorithm, the convergence accuracy and computational robustness of the ADE algorithm are proved to be better than that of the contrast algorithm.
【作者單位】: 瀘州職業(yè)技術學院機械工程系;重慶工商大學制造裝備機構設計與控制重慶市重點實驗室;
【基金】:重慶市基礎科學與前沿技術研究專項(cstc2015jcyj A70006) 重慶市教育委員會科學技術研究項目(KJ1403201) 制造裝備機構設計與控制重慶市重點實驗室開放基金資助項目(611115006) 瀘州市科學技術與知識產(chǎn)權局科學技術研究項目(2012-S-43)
【分類號】:TH112
本文編號:2470015
[Abstract]:According to the constraint condition of bar length, an unconstrained optimization model for solving the forward position solution of 6-DOF general 6-SPS parallel mechanism is established, and then the differential evolution (Differential evolution,DE) algorithm is applied to solve the problem. In order to improve the global optimization performance of the basic DE algorithm, an adaptive strategy is proposed to improve the global optimization performance of the algorithm, which may lead to the stagnation of evolution or fall into the region of local extremum. The adaptive differential evolution (Adaptive DE,ADE) algorithm is formed by introducing the adaptive strategy of new individuals into the DE algorithm and using hybrid mutation operator and scaling factor and cross factor based on trigonometric function disturbance to form an adaptive differential evolution (Adaptive DE,ADE) algorithm. The numerical results show that for the forward kinematics analysis of the general 6-SPS parallel mechanism, the ADE algorithm can obtain all high-precision forward position solutions with less computational overhead. Compared with the basic DE algorithm, the adaptive mutation particle swarm optimization algorithm and the improved artificial bee swarm algorithm, the convergence accuracy and computational robustness of the ADE algorithm are proved to be better than that of the contrast algorithm.
【作者單位】: 瀘州職業(yè)技術學院機械工程系;重慶工商大學制造裝備機構設計與控制重慶市重點實驗室;
【基金】:重慶市基礎科學與前沿技術研究專項(cstc2015jcyj A70006) 重慶市教育委員會科學技術研究項目(KJ1403201) 制造裝備機構設計與控制重慶市重點實驗室開放基金資助項目(611115006) 瀘州市科學技術與知識產(chǎn)權局科學技術研究項目(2012-S-43)
【分類號】:TH112
【相似文獻】
相關期刊論文 前6條
1 潘全科;王凌;高亮;桑紅燕;;基于差分進化與塊結構鄰域的作業(yè)車間調(diào)度優(yōu)化[J];機械工程學報;2010年22期
2 何兵;車林仙;劉初升;;結合機械設計約束處理的差分進化算法[J];機械設計;2012年04期
3 王萬良;范麗霞;徐新黎;張靜;;基于混合差分進化算法的并行機批處理調(diào)度問題研究[J];機電工程;2012年02期
4 何兵;車林仙;劉初升;;基于離散差分進化算法的齒輪優(yōu)化設計[J];機械傳動;2012年10期
5 王海燕;趙燕偉;張景玲;史文浩;張立萍;;基于混合差分進化的混排Flow-shop分批優(yōu)化調(diào)度[J];計算機集成制造系統(tǒng);2013年07期
6 ;[J];;年期
相關博士學位論文 前1條
1 王海燕;基于混合差分進化算法的制造過程分批優(yōu)化調(diào)度研究[D];浙江工業(yè)大學;2011年
相關碩士學位論文 前3條
1 汪雙喜;基于差分進化算法的柔性作業(yè)車間調(diào)度問題研究[D];華中科技大學;2014年
2 張越;差分進化算法及其在氣動優(yōu)化設計中的應用[D];上海交通大學;2009年
3 張文宮;差異工件單機批調(diào)度的差分進化算法研究[D];中國科學技術大學;2009年
,本文編號:2470015
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2470015.html
教材專著