基于主元分析的空氣壓縮機故障診斷研究
[Abstract]:The purpose of this paper is to find an efficient and feasible fault diagnosis method for air compressor. Based on the working principle, mechanical structure, fault type and fault mechanism of the air compressor, the main fault characteristics of the air compressor are summarized, and the realization requirements of the fault diagnosis system for the air compressor are summarized. In order to find a suitable fault diagnosis algorithm, this paper focuses on how to solve the problem of high correlation between the air compressor fault detection variables and the detection variables. In order to solve this problem, the principal component analysis (Principal Components Analysis, PCA) technique is used as the preprocessing algorithm of the detection data in this paper. By analyzing the distribution of data samples in the high-dimensional space, the algorithm can find out the main changing directions and trends of the data in the high-dimensional space, and then extract the feature vectors which contain most of the information of the original data to replace the high-dimensional ones. Highly correlated raw data. On the basis of the PCA technology as the data preprocessing algorithm, this paper proposes the combination of the radial basis function (Radical Basis Function, and the PCA technology. RBF) neural network based air compressor fault diagnosis method and air compressor fault diagnosis method based on PCA technology combined with DES evidence theory. The fault diagnosis method of air compressor based on PCA technology and RBF neural network is to process the large and highly correlated original data set by establishing the principal component model of the running state of air compressor. The method of feature extraction is used to simplify the original data, and the simplified sample data is used to train the RBF neural network. Finally, the trained RBF recognition network is used to realize the fault classification of the air compressor. This method can make full use of the advantages of PCA technology in data dimensionality reduction and correlation, and greatly simplify the complex detection data. At the same time, the dimensionality reduction of PCA reduces a lot of operation process for the training and recognition of RBF network, which can improve the speed of training and recognition of neural network, and reduce the dimension of data processed by neural network at the same time. The RBF network not only avoids the possibility of collapse due to the high dimension of processing data, but also improves the resolution of neural network in the process of training. The fault diagnosis method of air compressor based on PCA technology and D S evidence theory is a fault diagnosis method based on the idea of information fusion. The method is observed from the angle of different operating state of air compressor (that is, different evidence), and the fault diagnosis method is based on the idea of information fusion. By analyzing the characteristic information of the test data under each evidence, the running state of the compressor is judged. Finally, the discriminant results under each evidence are fused into a comprehensive result by the combination rule of DES. Thus, the final discrimination of the running state of the air compressor can be realized. This method can analyze the information of the detected data more comprehensively, has the characteristics of fast processing speed and strong anti-jamming ability, and can realize high-precision fault separation and discrimination.
【學(xué)位授予單位】:長春工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH165.3;TH45
【參考文獻】
相關(guān)期刊論文 前10條
1 王國鋒,王子良,秦旭達,王太勇;基于小波包和徑向基神經(jīng)網(wǎng)絡(luò)軸承故障診斷[J];北京科技大學(xué)學(xué)報;2004年02期
2 倪國強,梁好臣;基于Dempster-Shafer證據(jù)理論的數(shù)據(jù)融合技術(shù)研究[J];北京理工大學(xué)學(xué)報;2001年05期
3 易正俊,黃瀚敏,黃席樾;基于Dempster-shafer理論的多個神經(jīng)網(wǎng)絡(luò)分類器融合算法[J];重慶大學(xué)學(xué)報(自然科學(xué)版);2002年07期
4 廖東興;百龍灘水電廠計算機監(jiān)控系統(tǒng)安裝與調(diào)試[J];廣西電力技術(shù);1997年01期
5 涂嘉文,徐守時;貝斯方法與Dempster-Shafer證據(jù)理論的討論[J];紅外與激光工程;2001年02期
6 田永青,楊斌,朱仲英;基于RBF神經(jīng)網(wǎng)絡(luò)建立稅務(wù)預(yù)測模型的研究[J];計算機工程;2002年05期
7 陸爽,侯躍謙,田野;基于AR模型和徑向基神經(jīng)網(wǎng)絡(luò)的滾動軸承故障診斷[J];機械傳動;2004年05期
8 楊帆;張玉杰;張彩麗;;基于PCA和RBF網(wǎng)絡(luò)的故障診斷技術(shù)及其應(yīng)用研究[J];計算機測量與控制;2008年07期
9 許軍,羅飛路,張耀輝;多傳感器信息融合技術(shù)在無損檢測中的應(yīng)用研究[J];無損檢測;2000年08期
10 陳偉志,魏振軍,王春迎;多元統(tǒng)計分析在數(shù)據(jù)挖掘中的作用[J];信息工程大學(xué)學(xué)報;2003年04期
相關(guān)博士學(xué)位論文 前3條
1 蔣其友;人工智能理論與技術(shù)的研究及其在大型離心式壓縮機故障診斷中的應(yīng)用[D];北京化工大學(xué);1993年
2 牛群峰;壓縮機智能狀態(tài)監(jiān)測理論與應(yīng)用研究[D];南京理工大學(xué);2007年
3 張冀;基于多源信息融合的傳感器故障診斷方法研究[D];華北電力大學(xué)(河北);2008年
相關(guān)碩士學(xué)位論文 前7條
1 封波;多變量統(tǒng)計過程控制的應(yīng)用研究[D];浙江大學(xué);2002年
2 彭備戰(zhàn);信息融合技術(shù)在設(shè)備故障診斷中的應(yīng)用研究[D];廣東工業(yè)大學(xué);2002年
3 葛泉波;多傳感器數(shù)據(jù)融合及其在過程監(jiān)控中的應(yīng)用[D];河南大學(xué);2005年
4 閆宏莉;證據(jù)理論在機械設(shè)備故障診斷中的應(yīng)用研究[D];華北電力大學(xué)(北京);2006年
5 庫德強;基于工控機和PLC的監(jiān)控系統(tǒng)的研究[D];沈陽工業(yè)大學(xué);2006年
6 吳秋明;基于RBF神經(jīng)網(wǎng)絡(luò)的故障診斷[D];江蘇大學(xué);2006年
7 王浩;空氣壓縮機集中監(jiān)控系統(tǒng)的設(shè)計與實現(xiàn)[D];山東科技大學(xué);2007年
,本文編號:2469373
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2469373.html