天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機械論文 >

基于振動分析的滾動軸承早期故障診斷研究

發(fā)布時間:2019-04-12 10:02
【摘要】:滾動軸承是傳動機械的核心部件,其運行狀態(tài)直接影響到整臺設(shè)備的精度、可靠性及壽命等性能。由于其本身的結(jié)構(gòu)特點及工作環(huán)境等因素,滾動軸承極易出現(xiàn)故障。軸承故障的特征向量和識別模式之間呈復(fù)雜的非線性關(guān)系,在軸承早期微弱故障和復(fù)合故障的定量診斷與預(yù)示中,如何從非平穩(wěn)、非線性振動信號中提取有效的故障信息就成了關(guān)鍵,對這一問題進行研究在機械故障診斷中具有重要的理論及現(xiàn)實意義。論文主要研究內(nèi)容如下: 首先,在對滾動軸承故障機理和故障形式及成因進行全面分析的基礎(chǔ)上,模擬滾動軸承主要故障,通過滾動軸承振動檢測與診斷試驗系統(tǒng)實現(xiàn)對正常和故障狀態(tài)下的振動信號的采集,并對所得到信號進行時域參數(shù)特征統(tǒng)計和時頻域處理,以分析滾動軸承不同狀態(tài)下的振動特性。 其次,研究了基于隨機共振的滾動軸承早期故障識別方法,分析了單穩(wěn)隨機共振模型下的變尺度級聯(lián)效應(yīng),通過正常狀態(tài)以及外圈早期故障的仿真和實測數(shù)據(jù),驗證了隨機共振在抑制軸承背景噪聲、早期故障特征提取方面的可行性和實用性。 再次,提出了隨機共振(SR)消噪下的總體平均經(jīng)驗?zāi)J椒纸猓‥EMD)的滾動軸承特征提取方法,探討了EEMD方法在自適應(yīng)分解、抗模式混疊方面的優(yōu)勢,并結(jié)合包絡(luò)解調(diào)技術(shù),將其成功應(yīng)用于滾動軸承早期單點故障及耦合故障的特征提取。 最后,在SR-EEMD方法所構(gòu)建故障特征向量的基礎(chǔ)上,利用BP和RBF兩種神經(jīng)網(wǎng)絡(luò)模型分別對滾動軸承狀態(tài)樣本集進行訓(xùn)練和預(yù)測,再通過遺傳算法對RBF網(wǎng)絡(luò)進行參數(shù)優(yōu)化,提高了網(wǎng)絡(luò)性能。
[Abstract]:Rolling bearing is the core component of transmission machinery, and its running state directly affects the precision, reliability and life of the whole equipment. Because of its structural characteristics and working environment, rolling bearings are prone to fault. There is a complex nonlinear relationship between the characteristic vector and the recognition pattern of bearing fault. In the quantitative diagnosis and prediction of weak and compound faults in the early stage of bearing, how to solve the problem from non-stationary to non-stationary? It is very important to extract effective fault information from nonlinear vibration signals. The research on this problem is of great theoretical and practical significance in mechanical fault diagnosis. The main contents of this paper are as follows: firstly, the main faults of rolling bearings are simulated on the basis of a comprehensive analysis of the fault mechanism, fault form and cause of failure. Through the rolling bearing vibration detection and diagnosis test system, the vibration signals under normal and fault conditions are collected, and the time-domain parameter characteristic statistics and time-frequency domain processing of the obtained signals are carried out. In order to analyze the vibration characteristics of rolling bearings under different conditions. Secondly, the early fault identification method of rolling bearing based on stochastic resonance is studied, and the variable scale cascade effect under the monostable stochastic resonance model is analyzed. The simulation and measured data of the normal state and the early fault of the outer ring are carried out. The feasibility and practicability of stochastic resonance in suppressing bearing background noise and extracting early fault features are verified. Thirdly, the general average empirical mode decomposition (EEMD) method of rolling bearing feature extraction based on stochastic resonance (SR) de-noising is proposed, and the advantages of EEMD method in adaptive decomposition and anti-mode mixing are discussed, and the envelope demodulation technique is combined with the method of self-adaptive decomposition and anti-mode aliasing. It is successfully applied to feature extraction of early single point fault and coupling fault of rolling bearing. Finally, based on the fault eigenvector constructed by SR-EEMD method, two neural network models, BP and RBF, are used to train and predict the sample set of rolling bearing state, and then the parameters of RBF network are optimized by genetic algorithm. Improved network performance.
【學(xué)位授予單位】:中國計量學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TH133.33;TH165.3

【參考文獻】

相關(guān)期刊論文 前10條

1 高立新;殷海晨;張建宇;胥永剛;;第二代小波分析在軸承故障診斷中的應(yīng)用[J];北京工業(yè)大學(xué)學(xué)報;2009年05期

2 焦彥軍;胡春;;基于改進EEMD方法的數(shù)字濾波器[J];電力自動化設(shè)備;2011年11期

3 李寶棟;宿忠娥;吳曉紅;柴世文;;基于GA-RBF神經(jīng)網(wǎng)絡(luò)的電火花成形加工電參數(shù)優(yōu)化[J];工業(yè)儀表與自動化裝置;2013年02期

4 何慧龍;王太勇;冷永剛;張瑩;胥永剛;;級聯(lián)雙穩(wěn)隨機共振系統(tǒng)非線性濾波特性[J];吉林大學(xué)學(xué)報(工學(xué)版);2007年04期

5 馮志鵬,宋希庚,薛冬新;基于廣義粗糙集與神經(jīng)網(wǎng)絡(luò)集成的旋轉(zhuǎn)機械故障診斷研究[J];機械科學(xué)與技術(shù);2003年05期

6 喬保棟;陳果;曲秀秀;;基于小波變換和盲源分離的滾動軸承耦合故障診斷方法[J];機械科學(xué)與技術(shù);2012年01期

7 彭志科,何永勇,盧青,褚福磊;小波多重分形及其在振動信號分析中應(yīng)用的研究[J];機械工程學(xué)報;2002年08期

8 李志農(nóng),何永勇,褚福磊;基于Wigner高階譜的機械故障診斷的研究[J];機械工程學(xué)報;2005年04期

9 雷亞國;何正嘉;訾艷陽;胡橋;丁鋒;;混合聚類新算法及其在故障診斷中的應(yīng)用[J];機械工程學(xué)報;2006年12期

10 陳敏;胡蔦慶;秦國軍;安茂春;;參數(shù)調(diào)節(jié)隨機共振在機械系統(tǒng)早期故障檢測中的應(yīng)用[J];機械工程學(xué)報;2009年04期

相關(guān)博士學(xué)位論文 前1條

1 劉永斌;基于非線性信號分析的滾動軸承狀態(tài)監(jiān)測診斷研究[D];中國科學(xué)技術(shù)大學(xué);2011年



本文編號:2456920

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2456920.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a71a8***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
色丁香之五月婷婷开心| 中文字幕日韩欧美理伦片| 视频一区二区 国产精品| 日韩1区二区三区麻豆| 中国一区二区三区人妻| 麻豆视传媒短视频在线看| 太香蕉久久国产精品视频| 精品久久少妇激情视频| 久久精品a毛片看国产成人| 国产精品推荐在线一区| 99久久精品午夜一区| 欧美精品日韩精品一区| 国产传媒精品视频一区| 在线一区二区免费的视频| 中日韩美一级特黄大片| 99久热只有精品视频最新| 亚洲欧洲精品一区二区三区| 四季av一区二区播放| 午夜福利国产精品不卡| 亚洲妇女黄色三级视频| 91偷拍视频久久精品| 欧美日韩校园春色激情偷拍| 国产一区欧美一区二区| 国内尹人香蕉综合在线| 日本一区二区三区久久娇喘| 国产精品不卡高清在线观看| 爱在午夜降临前在线观看| 精品亚洲av一区二区三区| 亚洲午夜av久久久精品| 欧美精品中文字幕亚洲| 国产又大又黄又粗的黄色| 女人精品内射国产99| 亚洲欧美日韩中文字幕二欧美 | 亚洲成人黄色一级大片| 香蕉尹人视频在线精品| 高清国产日韩欧美熟女| 老熟妇乱视频一区二区| 九九热视频网在线观看| 国产亚洲欧美日韩国亚语| 日本午夜一本久久久综合| 中文字幕一区二区免费|