基于振動分析的滾動軸承早期故障診斷研究
[Abstract]:Rolling bearing is the core component of transmission machinery, and its running state directly affects the precision, reliability and life of the whole equipment. Because of its structural characteristics and working environment, rolling bearings are prone to fault. There is a complex nonlinear relationship between the characteristic vector and the recognition pattern of bearing fault. In the quantitative diagnosis and prediction of weak and compound faults in the early stage of bearing, how to solve the problem from non-stationary to non-stationary? It is very important to extract effective fault information from nonlinear vibration signals. The research on this problem is of great theoretical and practical significance in mechanical fault diagnosis. The main contents of this paper are as follows: firstly, the main faults of rolling bearings are simulated on the basis of a comprehensive analysis of the fault mechanism, fault form and cause of failure. Through the rolling bearing vibration detection and diagnosis test system, the vibration signals under normal and fault conditions are collected, and the time-domain parameter characteristic statistics and time-frequency domain processing of the obtained signals are carried out. In order to analyze the vibration characteristics of rolling bearings under different conditions. Secondly, the early fault identification method of rolling bearing based on stochastic resonance is studied, and the variable scale cascade effect under the monostable stochastic resonance model is analyzed. The simulation and measured data of the normal state and the early fault of the outer ring are carried out. The feasibility and practicability of stochastic resonance in suppressing bearing background noise and extracting early fault features are verified. Thirdly, the general average empirical mode decomposition (EEMD) method of rolling bearing feature extraction based on stochastic resonance (SR) de-noising is proposed, and the advantages of EEMD method in adaptive decomposition and anti-mode mixing are discussed, and the envelope demodulation technique is combined with the method of self-adaptive decomposition and anti-mode aliasing. It is successfully applied to feature extraction of early single point fault and coupling fault of rolling bearing. Finally, based on the fault eigenvector constructed by SR-EEMD method, two neural network models, BP and RBF, are used to train and predict the sample set of rolling bearing state, and then the parameters of RBF network are optimized by genetic algorithm. Improved network performance.
【學(xué)位授予單位】:中國計量學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TH133.33;TH165.3
【參考文獻】
相關(guān)期刊論文 前10條
1 高立新;殷海晨;張建宇;胥永剛;;第二代小波分析在軸承故障診斷中的應(yīng)用[J];北京工業(yè)大學(xué)學(xué)報;2009年05期
2 焦彥軍;胡春;;基于改進EEMD方法的數(shù)字濾波器[J];電力自動化設(shè)備;2011年11期
3 李寶棟;宿忠娥;吳曉紅;柴世文;;基于GA-RBF神經(jīng)網(wǎng)絡(luò)的電火花成形加工電參數(shù)優(yōu)化[J];工業(yè)儀表與自動化裝置;2013年02期
4 何慧龍;王太勇;冷永剛;張瑩;胥永剛;;級聯(lián)雙穩(wěn)隨機共振系統(tǒng)非線性濾波特性[J];吉林大學(xué)學(xué)報(工學(xué)版);2007年04期
5 馮志鵬,宋希庚,薛冬新;基于廣義粗糙集與神經(jīng)網(wǎng)絡(luò)集成的旋轉(zhuǎn)機械故障診斷研究[J];機械科學(xué)與技術(shù);2003年05期
6 喬保棟;陳果;曲秀秀;;基于小波變換和盲源分離的滾動軸承耦合故障診斷方法[J];機械科學(xué)與技術(shù);2012年01期
7 彭志科,何永勇,盧青,褚福磊;小波多重分形及其在振動信號分析中應(yīng)用的研究[J];機械工程學(xué)報;2002年08期
8 李志農(nóng),何永勇,褚福磊;基于Wigner高階譜的機械故障診斷的研究[J];機械工程學(xué)報;2005年04期
9 雷亞國;何正嘉;訾艷陽;胡橋;丁鋒;;混合聚類新算法及其在故障診斷中的應(yīng)用[J];機械工程學(xué)報;2006年12期
10 陳敏;胡蔦慶;秦國軍;安茂春;;參數(shù)調(diào)節(jié)隨機共振在機械系統(tǒng)早期故障檢測中的應(yīng)用[J];機械工程學(xué)報;2009年04期
相關(guān)博士學(xué)位論文 前1條
1 劉永斌;基于非線性信號分析的滾動軸承狀態(tài)監(jiān)測診斷研究[D];中國科學(xué)技術(shù)大學(xué);2011年
,本文編號:2456920
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2456920.html