基于諧波小波包和神經(jīng)網(wǎng)絡的旋轉(zhuǎn)機械故障診斷系統(tǒng)研究
[Abstract]:At present, vibration detection is the main means of fault diagnosis for large-scale rotating machinery. In general, complex dynamic and non-stationary vibration signals can be generated when rotating machinery fails. Therefore, how to accurately extract the characteristics of such signals is the first condition of fault diagnosis. Harmonic wavelet theory is very suitable for feature extraction of non-stationary signals based on its strict "box-shaped" characteristics in frequency domain, but because of the complexity of the vibration signal of rotating machinery, This method has not been widely used in fault diagnosis of rotating machinery. In this paper, based on the research of other scholars, a method of automatically extracting the energy feature of rotating machinery vibration signal by harmonic wavelet packet is proposed, which avoids the influence of different rotational speed and sampling frequency on the signal feature extraction. In this paper, the significance and development of rotating machinery fault diagnosis are introduced briefly, and several typical traditional signal processing methods are selected, and their advantages and disadvantages are compared. Then, the harmonic wavelet theory is studied systematically, and its advantages in the feature extraction of weak signal, local mutation signal and near-frequency signal are analyzed in detail through the simulation signal. The energy feature extraction method of harmonic wavelet packet at different rotation speed and different sampling frequency is studied. Secondly, the basic structure and algorithm of Elman neural network are introduced, and compared with BP neural network, its advantages in learning stability, convergence speed and fault recognition rate are highlighted. Finally, the idea of combining harmonic wavelet packet with Elman neural network is put forward, and the basic structure of intelligent fault diagnosis system for rotating machinery is designed based on this idea. The intelligent fault diagnosis system of rotating machinery based on harmonic wavelet packet and Elman neural network is designed based on the method of LabVIEW and MATLAB. By simulating four typical faults of rotor on the rotor test-bed, the vibration signal is collected and the diagnosis system is inputted. The results show that the diagnosis performance of the system is good.
【學位授予單位】:燕山大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:TH165.3
【參考文獻】
相關期刊論文 前10條
1 楊超;王志偉;;基于Elman神經(jīng)網(wǎng)絡的滾動軸承故障診斷方法[J];軸承;2010年05期
2 梁曉剛;張永昌;翟弘泰;;LabVIEW與Matlab混合編程的實現(xiàn)[J];電腦開發(fā)與應用;2009年09期
3 黃永東;;轉(zhuǎn)子不平衡現(xiàn)象的分析[J];發(fā)電設備;2009年03期
4 肖忠會;諧波小波分析及其在旋轉(zhuǎn)機械信號分析中的應用[J];風機技術;2001年01期
5 趙玉成,袁樹清,許慶余;奇異信號的諧波小波分析[J];工程力學;2000年03期
6 丁康;DAS動態(tài)信號分析與故障診斷系統(tǒng)[J];電工技術雜志;1996年03期
7 薛全會;程秀芳;姚桂艷;孫麗媛;;小波分析的應用現(xiàn)狀與前景[J];河北理工學院學報;2006年01期
8 蔡秀紅;;轉(zhuǎn)子不對中的分析和處理[J];化工機械;2010年03期
9 黃金平;任興民;;一種識別單盤柔性轉(zhuǎn)子不平衡的新方法[J];航空動力學報;2008年02期
10 王旭紅;何怡剛;;基于小波包和Elman神經(jīng)網(wǎng)絡的異步電機轉(zhuǎn)子斷條故障診斷方法[J];湖南大學學報(自然科學版);2010年05期
相關博士學位論文 前1條
1 胡愛軍;Hilbert-Huang變換在旋轉(zhuǎn)機械振動信號分析中的應用研究[D];華北電力大學(河北);2008年
相關碩士學位論文 前2條
1 鄧堰;轉(zhuǎn)子故障智能診斷中的特征提取與選擇技術研究[D];南京航空航天大學;2008年
2 葉進生;諧波小波包在旋轉(zhuǎn)機械故障診斷中的應用研究[D];華北電力大學(河北);2009年
本文編號:2443094
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2443094.html