基于拓?fù)鋭?dòng)力系統(tǒng)的復(fù)雜機(jī)械系統(tǒng)故障信息特征提取
[Abstract]:With the rapid development of modern industry, science and technology and the further improvement of automation, the structure of mechanical system is becoming more and more complicated, so the requirement of fault diagnosis of complex mechanical system is more and more high. The feature extraction of fault information is an important part of system fault diagnosis. Scholars at home and abroad have studied a variety of feature extraction methods to solve some problems in fault diagnosis of complex mechanical systems, but there are still many problems worth discussing and studying. On the basis of topology and topological dynamical system, this paper studies the feature extraction of fault information of complex mechanical system. The specific contents are as follows: firstly, based on the theory of topology and topological dynamic system, The topological space of state feature information of complex mechanical system is constructed, and the topological dynamic system model of the system is described. The description of the system features is realized, which lays a foundation for the feature extraction of fault information of the system. Secondly, by studying the properties of the topological dynamical system orbit, the characteristics of the system are analyzed, and the feature extraction of the system is realized. The orbit of the system is symbolized, and the orbit information of the system is described by the symbol sequence. By analyzing the complexity of the symbol sequence, the symbol entropy of the symbol sequence is calculated, that is, the topological entropy of the topological dynamic system, to identify the vibration state of the system. Topological entropy is the fault characteristic quantity of the system. The fault information feature extraction method of complex mechanical system based on topological dynamic system is applied to the fault feature extraction of rotating machinery system. The feasibility of the proposed method is verified by simulation. Finally, the fault diagnosis experiment is carried out on the rotating experimental platform. Through the feature extraction and analysis of the measured signals, the effective recognition of the different running states of the system is realized. Thus, the effectiveness of the proposed fault information feature extraction method based on topological dynamic system is verified.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH165.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周正干;馮占英;高翌飛;朱媈;;時(shí)頻分析在超聲導(dǎo)波信號(hào)分析中的應(yīng)用[J];北京航空航天大學(xué)學(xué)報(bào);2008年07期
2 孫殿柱;朱昌志;范志先;李延瑞;;散亂點(diǎn)云自適應(yīng)濾波算法[J];北京航空航天大學(xué)學(xué)報(bào);2011年01期
3 肖瑛;董玉華;;非高斯噪聲背景下的自適應(yīng)信號(hào)提取方法研究[J];大連民族學(xué)院學(xué)報(bào);2008年01期
4 王忠仁;林君;李文偉;;基于Wigner-Ville分布的復(fù)雜時(shí)變信號(hào)的時(shí)頻分析[J];電子學(xué)報(bào);2005年12期
5 嚴(yán)鵬;秦剛;郭敏;;自相關(guān)分析在漏磁信號(hào)檢測(cè)中的應(yīng)用[J];電子設(shè)計(jì)工程;2009年12期
6 李玉華;;最大熵譜估計(jì)在旋轉(zhuǎn)設(shè)備故障診斷中的應(yīng)用研究[J];化工自動(dòng)化及儀表;2006年03期
7 劉穎;嚴(yán)軍;;基于時(shí)間序列ARMA模型的振動(dòng)故障預(yù)測(cè)[J];化工自動(dòng)化及儀表;2011年07期
8 張萍,歐陽(yáng)光耀;基于分形幾何的信號(hào)特征提取技術(shù)及其應(yīng)用研究[J];海軍工程大學(xué)學(xué)報(bào);2001年01期
9 朱慧明;黃超;虞克明;劉再華;趙銳;;基于自回歸移動(dòng)平均過(guò)程的貝葉斯質(zhì)量控制方法研究[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年05期
10 楊宇;楊麗湘;程軍圣;;基于LMD和AR模型的轉(zhuǎn)子系統(tǒng)故障診斷方法[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年09期
相關(guān)博士學(xué)位論文 前1條
1 胡勁松;面向旋轉(zhuǎn)機(jī)械故障診斷的經(jīng)驗(yàn)?zāi)B(tài)分解時(shí)頻分析方法及實(shí)驗(yàn)研究[D];浙江大學(xué);2003年
本文編號(hào):2399301
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2399301.html