天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 機(jī)械論文 >

風(fēng)洞閥控電液伺服系統(tǒng)的精確控制研究

發(fā)布時(shí)間:2018-12-10 11:41
【摘要】:電液伺服控制系統(tǒng)綜合了電氣和液壓兩方面的優(yōu)點(diǎn),具有輸出功率大、剛度大、結(jié)構(gòu)緊湊、易于實(shí)現(xiàn)無(wú)級(jí)變速等優(yōu)點(diǎn),特別適合于風(fēng)洞調(diào)節(jié)機(jī)構(gòu)負(fù)載質(zhì)量大、要求響應(yīng)速度快等特點(diǎn),因此在風(fēng)洞中得到廣泛應(yīng)用。風(fēng)洞中最普遍的是閥控非對(duì)稱缸形式的電液位置伺服系統(tǒng),如多種結(jié)構(gòu)形式的模型支撐裝置。 由于結(jié)構(gòu)正反兩方向上的非對(duì)稱性以及部分系統(tǒng)參數(shù)具有不確定性,閥控非對(duì)稱缸電液位置伺服系統(tǒng)完整、精確的數(shù)學(xué)模型很難建立。同時(shí),風(fēng)洞模型支撐電液伺服執(zhí)行機(jī)構(gòu)要求在寬調(diào)速范圍內(nèi)實(shí)現(xiàn)驅(qū)動(dòng)油缸位置和速度的精確控制,利用常規(guī)單只伺服閥控液壓缸,采用PID控制方法難以達(dá)到上述指標(biāo)要求。 本文采用理論分析、數(shù)值仿真和試驗(yàn)相結(jié)合的方法,對(duì)上述問(wèn)題開(kāi)展了研究,共分為六章,各章內(nèi)容如下: 第一章為緒論,簡(jiǎn)要介紹了電液伺服系統(tǒng)和電液伺服閥的原理、構(gòu)成和分類,簡(jiǎn)述了風(fēng)洞中典型的電液位置伺服系統(tǒng)的特點(diǎn)及其控制上所面臨的問(wèn)題、研究背景,并介紹了本文的工作。 第二章建立了風(fēng)洞中普遍采用的閥控非對(duì)稱缸電液位置伺服系統(tǒng)較為精確的數(shù)學(xué)模型?紤]到閥控非對(duì)稱機(jī)構(gòu)在正反兩個(gè)方向上的非對(duì)稱性,對(duì)正向和反向分別予以建模;谀芰渴睾阍碇匦露x了負(fù)載壓力和負(fù)載流量,并根據(jù)液壓彈簧剛度理論分析了液壓固有頻率最小時(shí)非對(duì)稱缸的初始位置和總?cè)莘e。最后綜合電控系統(tǒng)數(shù)學(xué)模型,給出了整個(gè)電液位置伺服系統(tǒng)的傳遞函數(shù),并以某閥控非對(duì)稱缸電液位置伺服系統(tǒng)為例,計(jì)算了其各環(huán)節(jié)的傳遞函數(shù)。 第三章首先簡(jiǎn)單介紹了液壓仿真技術(shù)和常用的仿真軟件MATLAB/Simulink和AMESim。然后分別利用Simulink和AMESim對(duì)第二章提到的電液位置伺服系統(tǒng)進(jìn)行建模與仿真研究,比較了兩種方法各自的優(yōu)缺點(diǎn)。最后利用AMESim對(duì)Simulink的接口功能,針對(duì)同一系統(tǒng)建立了AMESim/Simulink的聯(lián)合仿真模型,取長(zhǎng)補(bǔ)短,發(fā)揮了兩種軟件各自的優(yōu)勢(shì)。 第四章針對(duì)連續(xù)變姿態(tài)角時(shí)油缸非線性速度精確控制的難點(diǎn),提出速度位置復(fù)合控制策略。針對(duì)風(fēng)洞中模型支撐電液伺服執(zhí)行機(jī)構(gòu)運(yùn)動(dòng)速度范圍寬、定位精度高的特點(diǎn),,提出小流量零遮蓋伺服閥和大流量正遮蓋伺服閥并聯(lián)控制的方案。利用仿真軟件AMESim建立了單伺服閥控液壓缸電液位置伺服系統(tǒng)、雙伺服閥并聯(lián)控液壓缸電液位置伺服系統(tǒng)的仿真模型,考察控制方法的可行性。 第五章基于NI PXI嵌入式實(shí)時(shí)控制系統(tǒng)搭建了雙伺服閥并聯(lián)電液伺服系統(tǒng)試驗(yàn)平臺(tái),實(shí)現(xiàn)了基于速度前饋與位置反饋控制策略的驗(yàn)證試驗(yàn)。仿真結(jié)果表明,采用速度/位置復(fù)合控制技術(shù)的雙伺服閥并聯(lián)控制系統(tǒng)可以實(shí)現(xiàn)寬速大流量范圍內(nèi)實(shí)現(xiàn)油缸位置和速度的同時(shí)精確控制。 第六章是總結(jié)與展望,對(duì)全文工作進(jìn)行了簡(jiǎn)要的總結(jié),明確了需進(jìn)一步開(kāi)展的研究工作。
[Abstract]:The electro-hydraulic servo control system has the advantages of high output power, large stiffness, compact structure and easy to realize stepless speed change. It is especially suitable for wind tunnel regulation mechanism with large load mass. It is widely used in wind tunnel because of its fast response speed and so on. The most common in wind tunnel is the electro-hydraulic position servo system in the form of valve controlled asymmetric cylinder, such as model support device with various structures. Due to the asymmetry of the structure in both positive and negative directions and the uncertainty of some system parameters, the electro-hydraulic position servo system of valve controlled asymmetric cylinder is complete, and it is difficult to establish a precise mathematical model. At the same time, the electro-hydraulic servo actuator supported by the wind tunnel model requires accurate control of the position and speed of the drive cylinder in a wide speed range. Using conventional single servo valve to control the hydraulic cylinder, the PID control method is difficult to meet the above requirements. In this paper, the theoretical analysis, numerical simulation and experimental methods are used to study the above problems, which are divided into six chapters. The contents of each chapter are as follows: the first chapter is the introduction. The principle, composition and classification of electro-hydraulic servo system and electro-hydraulic servo valve are briefly introduced. The characteristics of typical electro-hydraulic position servo system in wind tunnel and the problems in its control are briefly described. The research background and the work of this paper are also introduced. In the second chapter, a more accurate mathematical model of electro-hydraulic servo system of valve-controlled asymmetric cylinder used in wind tunnel is established. Considering the asymmetry of the valve-controlled asymmetric mechanism in both positive and negative directions, the forward and reverse models are established respectively. Based on the principle of conservation of energy, the load pressure and load flow are redefined, and the initial position and total volume of asymmetric cylinder with minimum natural frequency of hydraulic pressure are analyzed according to the theory of hydraulic spring stiffness. Finally, the transfer function of the whole electro-hydraulic position servo system is given by synthesizing the mathematical model of the electronic control system, and the transfer function of each link is calculated by taking the electro-hydraulic position servo system of a valve-controlled asymmetric cylinder as an example. The third chapter introduces the hydraulic simulation technology and the simulation software MATLAB/Simulink and AMESim.. Then, Simulink and AMESim are used to model and simulate the electro-hydraulic position servo system mentioned in Chapter 2, and the advantages and disadvantages of the two methods are compared. Finally, using the interface function of AMESim to Simulink, the joint simulation model of AMESim/Simulink is established for the same system, which makes use of each other and brings into play the respective advantages of the two kinds of software. In chapter 4, a compound speed position control strategy is proposed to solve the problem of accurate nonlinear speed control for cylinder with continuous variable attitude angle. In view of the characteristics of wide speed range and high positioning accuracy of model supported electro-hydraulic servo actuator in wind tunnel, a scheme of parallel control of small flow zero cover servo valve and large flow positive cover servo valve is proposed. The simulation models of single servo valve controlled hydraulic cylinder electro-hydraulic position servo system and double servo valve combined control hydraulic cylinder electro-hydraulic position servo system were established by using the simulation software AMESim, and the feasibility of the control method was investigated. In the fifth chapter, based on the NI PXI embedded real-time control system, a parallel electro-hydraulic servo system test platform with double servo valves is built, and the verification test based on speed feedforward and position feedback control strategy is realized. The simulation results show that the dual servo valve parallel control system using the speed / position compound control technology can realize the accurate control of the position and speed of the cylinder in the wide speed and large flow range at the same time. The sixth chapter is the summary and prospect, the full text work has carried on the brief summary, has identified the need for further research work.
【學(xué)位授予單位】:中國(guó)空氣動(dòng)力研究與發(fā)展中心
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH137.9

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 龔舉權(quán);李俊華;張英敏;;基于LabVIEW RT的實(shí)時(shí)系統(tǒng)中網(wǎng)絡(luò)通信的實(shí)現(xiàn)[J];兵工自動(dòng)化;2007年11期

2 JesseRussell,李寶琨;磁致伸縮位移傳感器的技術(shù)與創(chuàng)新[J];傳感器世界;1997年11期

3 徐格寧;胡增嶸;;電梯速度曲線、行程及時(shí)間綜合分析[J];中國(guó)工程機(jī)械學(xué)報(bào);2004年04期

4 秦家升 ,游善蘭;AMESim軟件的特征及其應(yīng)用[J];工程機(jī)械;2004年12期

5 強(qiáng)寶民;劉保杰;;閥控非對(duì)稱液壓缸建模方法研究[J];裝備制造技術(shù);2011年03期

6 高翔,朱蕓,梁棟;電液伺服系統(tǒng)的建模與仿真研究[J];海軍工程學(xué)院學(xué)報(bào);1999年04期

7 項(xiàng)曉峰 ,田作華 ,張憶;LabVIEW RT實(shí)時(shí)控制開(kāi)發(fā)系統(tǒng)結(jié)構(gòu)與開(kāi)發(fā)應(yīng)用[J];測(cè)控技術(shù);2002年12期

8 蘇海龍,駱宗安,張殿華;基于LabVIEW RT的多實(shí)時(shí)任務(wù)控制系統(tǒng)[J];測(cè)控技術(shù);2004年06期

9 王占林;裘麗華;;非對(duì)稱液壓缸伺服系統(tǒng)的特性補(bǔ)償[J];機(jī)床與液壓;1987年06期

10 王帆,周平,葛思華,何鉞;一種新型快速位置系統(tǒng)的研究[J];機(jī)床與液壓;1997年02期

相關(guān)博士學(xué)位論文 前2條

1 梁利華;減搖鰭電液負(fù)載仿真臺(tái)性能研究[D];哈爾濱工程大學(xué);2003年

2 倪敬;鋼管包裝電液伺服系統(tǒng)控制策略及其應(yīng)用研究[D];浙江大學(xué);2006年

相關(guān)碩士學(xué)位論文 前1條

1 劉偉奇;閥控非對(duì)稱缸電液位置伺服系統(tǒng)控制的研究[D];北京交通大學(xué);2009年



本文編號(hào):2370505

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2370505.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6b762***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com