天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機(jī)械論文 >

三維幾何約束共性表達(dá)及解耦性的研究

發(fā)布時(shí)間:2018-11-27 19:29
【摘要】:三維幾何約束求解對(duì)于裝配建模、裝配工藝規(guī)劃和并行工程等多個(gè)領(lǐng)域的研究都有重要意義。雖然對(duì)幾何約束系統(tǒng)的求解在過去幾十年有大量的文獻(xiàn)研究,但是仍有許多問題尚待解決,尤其是在三維幾何約束求解領(lǐng)域。為此,本文對(duì)三維幾何約束系統(tǒng)的建模、分析、分解和求解等方面的關(guān)鍵問題進(jìn)行了研究,提出一種以抽象的具有共性的球體、盒體及球盒體統(tǒng)一表達(dá)三維幾何實(shí)體的模型。探索解耦性的高效求解,建立三維幾何約束系統(tǒng)求解的統(tǒng)一表達(dá)理論及求解技術(shù)體系,為高效三維幾何約束求解器的實(shí)現(xiàn)提供基礎(chǔ)理論。 在幾何約束系統(tǒng)中,幾何實(shí)體之間的約束關(guān)系是非常復(fù)雜的,如何建立有效的幾何約束系統(tǒng)模型,是幾何約束系統(tǒng)研究的基礎(chǔ)。本文首先研究了幾何約束系統(tǒng)建模問題。以幾何約束歐拉參數(shù)表達(dá)為基礎(chǔ),借鑒E.J.Haug簡(jiǎn)潔統(tǒng)一的基本約束表達(dá)方式,研究幾何約束和幾何實(shí)體共性的表達(dá)問題,并抽象出球體、盒體和球盒體三種基本幾何實(shí)體表達(dá)空間幾何體,建立幾何約束系統(tǒng)模型,形成幾何約束系統(tǒng)表達(dá)層。 以無向圖建立三維幾何約束系統(tǒng),約束圖中的頂點(diǎn)的自由度和約束形式存在變化,因此,需要研究高效的分解策略,并適用操作性強(qiáng)的求解模式。針對(duì)三維裝配姿態(tài)約束和位置約束的可解耦性,采用基于球面幾何的方法研究可解耦構(gòu)型姿態(tài)的求解,將單個(gè)姿態(tài)約束映射為球面上的一點(diǎn),通過建立球平面坐標(biāo)系,則球面上的點(diǎn)可映射為球平面上的二維點(diǎn),三維空間問題轉(zhuǎn)換為二維平面問題,其求解難度降低,幾何推理意義明顯。位置約束的求解擬采用解析的方法。 本文運(yùn)用三維幾何領(lǐng)域的相關(guān)知識(shí),通過分析幾何約束系統(tǒng)的內(nèi)在等價(jià)性,結(jié)合圖論的理論,提出三維幾何約束系統(tǒng)的等價(jià)性分析方法。該方法對(duì)幾何約束圖的拓?fù)浣Y(jié)構(gòu)進(jìn)行優(yōu)化,采用等價(jià)的方法拆除、縮減和分離約束閉環(huán),并且在不需要考慮約束系統(tǒng)中的冗余約束,可以處理過約束、完整約束和欠約束,實(shí)現(xiàn)三維幾何約束系統(tǒng)在幾何意義上的最大分解。 本文的研究?jī)?nèi)容在原型系統(tǒng)WhutVAS中得到實(shí)現(xiàn),并通過實(shí)例驗(yàn)證了研究?jī)?nèi)容的可行性和有效性。
[Abstract]:3D geometric constraint solving is very important for assembly modeling, assembly process planning and concurrent engineering. Although there has been a lot of literature research on geometric constraint system in the past few decades, there are still many problems to be solved, especially in the field of 3D geometric constraint solution. Therefore, the key problems in modeling, analysis, decomposition and solution of 3D geometric constraint system are studied in this paper, and a model of representing 3D geometric entities by abstract and common sphere, box and spherical box is proposed. This paper explores the efficient solution of decoupling, establishes the unified representation theory and technical system for solving 3D geometric constraint system, and provides the basic theory for the realization of efficient 3D geometric constraint solver. In geometric constraint system, the constraint relationship between geometric entities is very complex. How to establish an effective geometric constraint system model is the foundation of geometric constraint system research. In this paper, the modeling problem of geometric constrained systems is studied. Based on the Euler parameter representation of geometric constraints, the representation of geometric constraints and geometric entity commonalities is studied by using E.J.Haug 's simple and uniform basic constraint expression method, and the sphere is abstracted. Three basic geometric entities, box and spherical box, express spatial geometry, establish geometric constraint system model, and form geometric constraint system representation layer. The degree of freedom and the constraint form of the vertex in the constraint graph are changed by using the undirected graph to establish the three-dimensional geometric constraint system. Therefore, it is necessary to study the efficient decomposition strategy and apply the solution mode with strong maneuverability. Aiming at the decoupling of 3D assembly attitude constraint and position constraint, the method based on spherical geometry is used to study the solution of decoupled configuration attitude. The single attitude constraint is mapped to a point on the sphere, and the spherical plane coordinate system is established. Then the points on the sphere can be mapped to the two-dimensional points on the spherical plane, and the three-dimensional space problem can be transformed into the two-dimensional plane problem. The difficulty of solving the problem is reduced and the significance of geometric reasoning is obvious. The analytical method is used to solve the position constraint. In this paper, by analyzing the intrinsic equivalence of geometric constraint systems and combining the theory of graph theory, an equivalent analysis method of 3D geometric constraint systems is proposed by using the relevant knowledge in the field of 3D geometry. This method optimizes the topological structure of geometric constraint graph, and adopts equivalent method to remove, reduce and separate the closed loop of constraints, and can deal with overconstraints, complete constraints and underconstraints without considering the redundant constraints in the constraint system. The maximum decomposition of 3D geometric constraint system in geometric sense is realized. The research content of this paper is realized in the prototype system WhutVAS, and the feasibility and effectiveness of the research content are verified by an example.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH164;TP391.7

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 石志良;陳濤;黃學(xué)良;陳立平;;幾何約束求解可構(gòu)造模式研究[J];工程圖學(xué)學(xué)報(bào);2008年02期

2 陳立平,向文,,余俊,周濟(jì);幾何約束系統(tǒng)推理研究[J];華中理工大學(xué)學(xué)報(bào);1995年06期

3 高小山,黃磊東,蔣鯤;求解幾何約束問題的幾何變換法[J];中國(guó)科學(xué)E輯:技術(shù)科學(xué);2001年02期

4 李彥濤,胡事民,孫家廣;一個(gè)幾何約束系統(tǒng)分解的新算法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2000年12期

5 石志良;陳立平;王小剛;;三維裝配約束推理的球面幾何和球面機(jī)構(gòu)法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2006年07期

6 石志良;陳立平;;裝配位置約束建模及求解[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2007年05期

7 董金祥,葛建新,高屹,李海龍;變參繪圖系統(tǒng)中約束求解的新思路[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);1997年06期

8 孟祥旭,江嘉業(yè),劉慎權(quán);基于有向超圖的參數(shù)代表示模型及其實(shí)現(xiàn)[J];計(jì)算機(jī)學(xué)報(bào);1997年11期

9 陳立平,王波興,彭小波,周濟(jì);一種面向欠約束幾何系統(tǒng)求解的二部圖匹配優(yōu)化處理方法[J];計(jì)算機(jī)學(xué)報(bào);2000年05期

10 李彥濤,陳玉健,孫家廣;混合式幾何約束滿足的研究[J];計(jì)算機(jī)學(xué)報(bào);2001年04期

相關(guān)博士學(xué)位論文 前2條

1 黃學(xué)良;三維幾何約束系統(tǒng)的分析與求解方法研究[D];華中科技大學(xué);2011年

2 石志良;幾何約束系統(tǒng)建模與求解方法研究[D];華中科技大學(xué);2006年



本文編號(hào):2361812

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2361812.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶fbfe6***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
日本免费一区二区三女| 久久久精品区二区三区| 麻豆亚州无矿码专区视频| 欧美区一区二区在线观看| 国产精品一区二区成人在线| 日韩少妇人妻中文字幕| 亚洲一区二区三区av高清| 色婷婷视频在线精品免费观看| 色婷婷人妻av毛片一区二区三区| 九九热精品视频免费观看| 亚洲国产婷婷六月丁香| 亚洲最新中文字幕在线视频| 97人妻精品一区二区三区男同| 国产又粗又猛又爽又黄| 国产成人一区二区三区久久| 青青免费操手机在线视频| 精品国产亚洲一区二区三区| 日本丁香婷婷欧美激情| 精品亚洲香蕉久久综合网| 日韩一级一片内射视频4k| 色一欲一性一乱—区二区三区| 日本人妻中出在线观看| 久久91精品国产亚洲| 美女黄色三级深夜福利| 九九蜜桃视频香蕉视频| 美女露小粉嫩91精品久久久| 亚洲一区二区三区国产| 男女午夜福利院在线观看 | 日韩欧美黄色一级视频| 婷婷色国产精品视频一区| 都市激情小说在线一区二区三区 | 老熟妇2久久国内精品| 欧美成人一区二区三区在线 | 精品丝袜一区二区三区性色| 日韩精品日韩激情日韩综合| 国产欧美另类激情久久久| 国产一区二区三区色噜噜| 久久精品视频就在久久| 亚洲欧美中文日韩综合| 两性色午夜天堂免费视频| 久久精品中文字幕人妻中文|