切流式超聲速天然氣分離器結(jié)構(gòu)設(shè)計(jì)與數(shù)值模擬
[Abstract]:Supersonic gas separator is a kind of device used for natural gas dehydration. It has been widely used in natural gas transportation because of its simple structure, high efficiency, low energy consumption and unattended support. The supersonic gas separators used in modern industry are axial flow, which can be divided into two types: supersonic wing rear and front. The supersonic wing rear separator will produce strong shock wave in front of the wing which will affect the stable use of the system. The supersonic wing front separator has higher requirements for the wing design and often can not produce enough centrifugal acceleration. Inspired by the intake mode of vortex tube, the supersonic wing is removed from the natural gas separator and the intake mode is changed from axial to tangential direction. The numerical simulation is carried out by using CFD software. Firstly, the working principle of supersonic gas separator is analyzed and discussed theoretically. Then, the structural parameters of the traditional axial flow gas separator are optimized, and the corresponding physical model is established according to the structural parameters. The grid is divided by using GAMBIT software, and the numerical simulation is carried out by using CFD software. The velocity field, pressure field and temperature field are mainly analyzed. The results show that shock waves are produced at the axial x _ (0.19) m in the supersonic wing rear separator, and the results are consistent with those obtained by the predecessors. Then the supersonic wing is removed while other structural parameters remain unchanged and the tangent flow inlet nozzle is designed according to the structure of the vortex tube. Then the tangential flow supersonic gas separator is numerically simulated. The results show that the high pressure gas flow rotates steadily at high speed in the separator and no shock wave is produced. The tangential velocity can reach up to 250 m / s at the inlet of the air flow, and the tangential velocity of the gas flow in the gas-liquid separation section is almost unchanged, which can reach 150 m / s, which is higher than the tangential velocity of the supersonic wing front separator, and the swirl ratio can reach 0.27; The lowest temperature in the gas-liquid separation section is up to 140 ks. which creates a good environment for water vapor condensation.
【學(xué)位授予單位】:太原科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TH237.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 趙良舉,曾丹苓,袁鵬,肖艷;汽液兩相混合物的加速與激波的熱力學(xué)分析[J];工程熱物理學(xué)報(bào);2001年03期
2 周少偉;姜任秋;宋福元;張鵬;王朋濤;陳躍進(jìn);高超;;渦流管內(nèi)三維強(qiáng)旋流流場(chǎng)數(shù)值模擬[J];機(jī)械工程學(xué)報(bào);2007年12期
3 劉衛(wèi)紅;軸對(duì)稱收縮段設(shè)計(jì)研究[J];空氣動(dòng)力學(xué)學(xué)報(bào);1998年02期
4 曹學(xué)文;陳麗;杜永軍;林宗虎;;超聲速旋流天然氣分離器的旋流特性數(shù)值模擬[J];中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年06期
5 王國(guó)輝,蔡體敏,何國(guó)強(qiáng),胡春波;一種旋流式噴嘴的實(shí)驗(yàn)和數(shù)值研究[J];推進(jìn)技術(shù);2003年01期
6 曹學(xué)文;陳麗;林宗虎;杜永軍;;超聲速旋流天然氣分離器研究[J];天然氣工業(yè);2007年07期
7 曹學(xué)文;陳麗;林宗虎;杜永軍;;用于超聲速旋流分離器中的超聲速噴管研究[J];天然氣工業(yè);2007年07期
8 曹學(xué)文;肖榮鴿;杜永軍;李震東;林宗虎;;噴管內(nèi)高速流動(dòng)天然氣相變特性數(shù)值研究[J];西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年01期
相關(guān)碩士學(xué)位論文 前8條
1 邱中華;含濕氣體在兩相渦流管中自發(fā)冷凝與分離性能研究[D];大連理工大學(xué);2008年
2 龐會(huì)中;新型超音速氣體凈化分離裝置設(shè)計(jì)研究[D];北京工業(yè)大學(xué);2009年
3 胡施俊;超音速噴嘴渦流管氣體分離性能研究[D];大連理工大學(xué);2009年
4 胡艷梅;超音速旋流分離器技術(shù)研究[D];中國(guó)石油大學(xué);2008年
5 田漢;軸流式渦流管結(jié)構(gòu)設(shè)計(jì)和數(shù)值模擬[D];太原科技大學(xué);2009年
6 史志龍;錐芯超音速分離器流場(chǎng)特性及工程應(yīng)用研究[D];大連理工大學(xué);2010年
7 宋婧;噴管超音速分離技術(shù)在氣體脫水中的應(yīng)用研究[D];北京化工大學(xué);2010年
8 尹兆娟;液滴在旋流分離器內(nèi)的運(yùn)動(dòng)規(guī)律研究[D];中國(guó)石油大學(xué);2010年
,本文編號(hào):2350414
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2350414.html