盲信號分離算法及其在轉(zhuǎn)子故障信號分離中的應(yīng)用方法研究
[Abstract]:In the research of condition monitoring and fault diagnosis of rotating machinery, fault feature extraction and pattern recognition are related to the reliability and accuracy of fault diagnosis, and are also the key problems in the research of rotating machinery fault diagnosis. It is a common method to monitor and diagnose the rotor vibration signal in the fault monitoring and diagnosis of rotating machinery at present. The purpose of this paper is to enrich and improve the theory and method of mechanical fault diagnosis, to use the blind signal separation method in modern signal processing technology as a tool, and to study the most widely used rotating machinery in mechanical equipment. Using blind signal separation algorithm, median filter and blind signal separation method, adaptive particle swarm optimization blind signal separation method, noise reduction source separation method and other signal processing methods, The fault feature extraction of rotor system is studied. The main contents are as follows: (1) aiming at the problem of fault feature extraction of rotating machinery under noise interference, a noise removal method based on second-order blind identification is proposed. Based on the non-stationary characteristic of vibration signals of rotating machinery, the collected signals are divided into non-overlapping time windows, and then the time-delay mean variance in each time window is estimated, so that the noise signal is separated from the source signal. In this paper, the blind signal separation theory is applied to de-noise processing. The key point is to separate noise, not to filter noise. Therefore, effective signals are not lost when noise is separated, which provides a new method for de-noising processing. The simulation and processing of the actual rotor vibration data show that the proposed method can effectively separate out the interference noise and improve the accuracy of the sampling signal. (2) aiming at the problem that the separation of nonlinear mechanical fault signals depends on the nonlinear function, an adaptive particle swarm optimization (APSO) based method for mechanical fault feature extraction is proposed. In this method, the negative entropy of the sampled signal is taken as the objective function, and then the concept of adaptive particle swarm optimization is introduced. The state of the signal adjusts the inertia factor adaptively to maximize the negative entropy of the signal so as to realize the effective separation of the signals. The simulation and experimental results show that the method improves the correlation coefficient of the separation signal and realizes the effective separation of each source signal. (3) A fault feature extraction method for rotating machinery based on noise reduction source separation is proposed. According to the statistical characteristics of vibration signals of rotating machinery, the noise reduction function is constructed, and the separation of components is realized according to the noise reduction function. On the basis of simulation fault signal experiments, the performance of four noise reduction functions is quantitatively compared. It is found that the separation result based on tangent denoising function has the best similarity coefficient and is more suitable for separating aliasing fault signals. The source separation method based on tangent denoising function is applied to the fault feature extraction of rotating machinery. The analysis results show that, The rotor unbalance and misalignment caused by rub-impact fault are well separated from the rotor mixed vibration signal by this method. (4) in view of the failure of source signal separation algorithm for aliasing vibration signal separation under strong impulse noise, a method based on median filter and blind signal separation algorithm is proposed. Firstly, the vibration signal is de-noised by median filtering method, and then the aliasing signal is separated by blind signal separation algorithm. The simulation and experimental results show that the separation effect is not satisfactory if the blind signal separation algorithm is used directly under the strong impulse noise interference, and if the median de-noising algorithm is combined with the blind signal separation algorithm, The separation effect was obviously improved.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TH165.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 田昊;唐力偉;田廣;;基于盲源分離的齒輪箱復(fù)合故障診斷研究[J];兵工學(xué)報(bào);2010年05期
2 秦海勤;徐可君;歐建平;;基于盲源分離技術(shù)的航空發(fā)動(dòng)機(jī)振動(dòng)信號分析[J];北京航空航天大學(xué)學(xué)報(bào);2010年11期
3 王鳳利;李宏坤;;利用ICA的局域波分解及其在機(jī)械故障診斷中應(yīng)用[J];大連理工大學(xué)學(xué)報(bào);2012年04期
4 趙青,俞承芳,凌燮亭;前饋神經(jīng)網(wǎng)絡(luò)盲信號分離的實(shí)驗(yàn)研究[J];復(fù)旦學(xué)報(bào)(自然科學(xué)版);1997年03期
5 李舜酩;轉(zhuǎn)子振動(dòng)故障信號的盲分離[J];航空動(dòng)力學(xué)報(bào);2005年05期
6 吳軍彪,陳進(jìn),伍星;基于盲源分離技術(shù)的故障特征信號分離方法[J];機(jī)械強(qiáng)度;2002年04期
7 邵忍平;黃欣娜;劉宏昱;徐永強(qiáng);;基于高階累積量的齒輪系統(tǒng)故障檢測與診斷[J];機(jī)械工程學(xué)報(bào);2008年06期
8 成瑋;張周鎖;何正嘉;;降噪源分離技術(shù)及其在機(jī)械設(shè)備運(yùn)行信息特征提取中的應(yīng)用[J];機(jī)械工程學(xué)報(bào);2010年13期
9 李志農(nóng);劉衛(wèi)兵;易小兵;;基于局域均值分解的機(jī)械故障欠定盲源分離方法研究[J];機(jī)械工程學(xué)報(bào);2011年07期
10 馮健;張化光;;基于小波消噪和盲源分離的信號奇異點(diǎn)檢測方法[J];控制與決策;2007年09期
相關(guān)博士學(xué)位論文 前9條
1 王宇;機(jī)械噪聲監(jiān)測中盲信號處理方法研究[D];昆明理工大學(xué);2010年
2 趙慧敏;柴油機(jī)非穩(wěn)態(tài)振動(dòng)信號分析與智能故障診斷研究[D];天津大學(xué);2010年
3 徐紅梅;內(nèi)燃機(jī)振聲信號時(shí)頻特性分析及源信號盲分離技術(shù)研究[D];浙江大學(xué);2008年
4 葉紅仙;機(jī)械系統(tǒng)振動(dòng)源的盲分離方法研究[D];浙江大學(xué);2008年
5 王衛(wèi)華;盲源分離算法及應(yīng)用研究[D];哈爾濱工程大學(xué);2009年
6 高建彬;盲源分離算法及相關(guān)理論研究[D];電子科技大學(xué);2012年
7 趙永健;獨(dú)立分量分析算法及其在信號處理中的應(yīng)用研究[D];山東大學(xué);2012年
8 明陽;基于循環(huán)平穩(wěn)和盲源分離的滾動(dòng)軸承故障特征提取方法研究[D];上海交通大學(xué);2013年
9 王法松;盲源分離的擴(kuò)展模型與算法研究[D];西安電子科技大學(xué);2013年
,本文編號:2329473
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2329473.html