基于分段聚類的滾動軸承故障診斷方法研究
[Abstract]:Rolling bearing is one of the most vulnerable components in rotating machinery. According to statistics, about 30% of rotating machinery failures are caused by bearing failures. Therefore, the condition monitoring and fault diagnosis of rolling bearings is of great significance. Bearing fault shock signal is a pulse waveform with short duration. This paper attempts to intercept the impact signal from the background noise and determine the source of the impact by calculating the frequency of the impact, so as to detect and diagnose the working state of the bearing. The main contents of this paper are as follows: (1) based on the mechanism of vibration signal of rolling bearing, the vibration components of bearing are discussed. And the bearing work of various factors are described. The impact pulse characteristics of different bearing components are studied. It provides theoretical basis for rolling bearing fault diagnosis. (2) the wavelet analysis method and Fourier transform analysis method are compared and analyzed. The transient detection of fault vibration signal is realized by wavelet analysis. On the basis of impulse detection, each pulse is segmented. (3) feature extraction of segmented signal, including time domain feature, frequency domain feature, wavelet packet energy feature. Because these characteristics reflect the characteristics of impulse pulses from different angles, however, the ability of different eigenvalues to reflect the properties of pulses is also different. It is necessary to introduce principal component analysis (PCA). By introducing the principle of principal component analysis (PCA) algorithm and geometric meaning, applying PCA after feature extraction, the results show that a few principal components can well reflect the properties of different impulse components. The purpose of dimension reduction is achieved. (4) the application of clustering algorithm in bearing fault diagnosis is introduced. The definition of distance, the definition of clustering criterion function and the classification of clustering algorithm are introduced in detail, and the characteristics of different clustering algorithms are compared. The influence of two parameters of fuzzy index and clustering number on the clustering results in fuzzy C-means clustering algorithm is discussed. Finally, the effectiveness of this method is verified by two simulated bearing failure experiments. One is to diagnose the single fault type of outer ring, the other is to diagnose the mixed fault type of outer ring fault and rolling body fault. This paper shows that the method of bearing fault diagnosis based on piecewise clustering is feasible, the algorithm is simple and reliable, and the accurate diagnosis of bearing is of great significance.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH133.31;TH165.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐振輝,馬立元;滾動軸承的故障特征提取[J];兵工自動化;2004年01期
2 賀銀芝,沈松,劉正士,應(yīng)懷樵;基于小波變換的奇異性檢測在發(fā)動機(jī)連桿軸承故障診斷中的應(yīng)用[J];北京工業(yè)大學(xué)學(xué)報(bào);2000年04期
3 丁娜;關(guān)立行;文常保;;基于Morlet小波的滾動軸承故障信號奇異性分析[J];軸承;2006年01期
4 王啟志;王曉霞;;模糊聚類在機(jī)械故障診斷中的應(yīng)用[J];軸承;2008年10期
5 馬家駒,,梁文梅;滾動軸承振動統(tǒng)計(jì)特性分析[J];軸承;1994年01期
6 范九倫,吳成茂;劃分系數(shù)和總變差相結(jié)合的聚類有效性函數(shù)[J];電子學(xué)報(bào);2001年11期
7 張中民,盧文祥,楊叔子,張英堂;滾動軸承故障振動模型及其應(yīng)用研究[J];華中理工大學(xué)學(xué)報(bào);1997年03期
8 陸爽,張子達(dá),李萌;機(jī)械微弱振動信號檢測的研究[J];機(jī)電工程;2004年07期
9 宋余慶,羅永剛,孫志揮;應(yīng)用主分量分析與粗糙集處理的特征提取[J];計(jì)算機(jī)工程與應(yīng)用;2004年22期
10 張勇;陳莉;;聚類與PCA融合的特征提取方法研究[J];計(jì)算機(jī)工程與應(yīng)用;2010年11期
相關(guān)會議論文 前1條
1 崔寶珍;王澤兵;潘宏俠;;小波包分析和模糊聚類方法在滾動軸承故障診斷中的應(yīng)用[A];第九屆全國振動理論及應(yīng)用學(xué)術(shù)會議論文摘要集[C];2007年
相關(guān)碩士學(xué)位論文 前4條
1 趙志宇;基于小波變換的滾動軸承故障診斷系統(tǒng)的研究與開發(fā)[D];大連理工大學(xué);2005年
2 高紅斌;基于靜動力學(xué)的滾動軸承故障模型分析及物理模擬[D];太原理工大學(xué);2006年
3 黃一樣;基于小波理論的滾動軸承智能故障診斷方法的研究[D];中南大學(xué);2009年
4 竇遠(yuǎn);旋轉(zhuǎn)機(jī)械故障特征提取技術(shù)及其系統(tǒng)研制[D];北京化工大學(xué);2009年
本文編號:2279299
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2279299.html