虛擬維修訓練中人機交互的認知負荷研究
[Abstract]:With the application of advanced science and technology, the technical content of various products is increasing day by day, which puts forward higher requirements for the training of maintenance personnel. Virtual maintenance training has become a new research field. This paper introduces the importance of cognitive load theory in virtual maintenance training, and analyzes and studies some characteristics of cognitive load in virtual maintenance training. Firstly, the concept and research background of virtual maintenance training are introduced, and the research status of virtual maintenance training at home and abroad is described in detail. The research direction of this paper is the research of cognitive load in virtual maintenance training. In addition, some basic theoretical knowledge applied in the research mainly includes the content of virtual maintenance training, the cognitive mechanism in virtual maintenance training, the concept of cognitive load, the classification of cognitive load, and the principle of reducing cognitive load. And the basic assessment method of cognitive load. Secondly, on the basis of the principle of reducing cognitive load, the effects of problem completion effect and attention dispersion effect on cognitive load in virtual maintenance training are verified by designing and comparing experiments. Finally, this paper studies the characteristics of cognitive load in virtual maintenance training. Based on the single dimension evaluation index obtained in this part, the cognitive load grade in the virtual maintenance training system is evaluated synthetically by using the probabilistic neural network and competitive neural network in the artificial neural network model. The change characteristics of cognitive load indexes in different working periods during continuous operation were studied. And the probabilistic neural network is used to predict the cognitive load assessment index during continuous training.
【學位授予單位】:北京郵電大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:TP11;TH17;TP391.9
【參考文獻】
相關期刊論文 前10條
1 譚繼帥;郝建平;王松山;;裝備虛擬維修訓練研究與發(fā)展綜述[J];兵工自動化;2007年05期
2 王強;宋建社;曹繼平;葉慶;;復雜裝備虛擬維修訓練技術[J];兵工自動化;2009年12期
3 劉瑞葉;黃磊;;基于動態(tài)神經(jīng)網(wǎng)絡的風電場輸出功率預測[J];電力系統(tǒng)自動化;2012年11期
4 姚李孝,姚金雄,李寶慶,萬詩新;基于競爭分類的神經(jīng)網(wǎng)絡短期電力負荷預測[J];電網(wǎng)技術;2004年10期
5 唐劍嵐;周瑩;;認知負荷理論及其研究的進展與思考[J];廣西師范大學學報(哲學社會科學版);2008年02期
6 馬麟;呂川;;虛擬維修技術的探討[J];計算機輔助設計與圖形學學報;2005年12期
7 鄭丕諤,馬艷華;基于RBF神經(jīng)網(wǎng)絡的股市建模與預測[J];天津大學學報;2000年04期
8 張中波;豐世林;;虛擬維修仿真技術在航空器維修中的應用[J];西安航空技術高等?茖W校學報;2010年05期
9 丁道群;羅揚眉;;認知風格和信息呈現(xiàn)方式對學習者認知負荷的影響[J];心理學探新;2009年03期
10 楊宇航,李志忠,鄭力;虛擬維修研究綜述[J];系統(tǒng)仿真學報;2005年09期
相關博士學位論文 前1條
1 王壇華;基于三維網(wǎng)絡模擬技術的裂隙網(wǎng)絡水力研究及隧道涌水非線性預測[D];吉林大學;2008年
相關碩士學位論文 前2條
1 雷可君;基于小波包變換與PNN神經(jīng)網(wǎng)絡相結合的指紋識別系統(tǒng)[D];湖南大學;2007年
2 郭亞楠;基于神經(jīng)網(wǎng)絡的軟巖巷道變形預測研究[D];河北工程大學;2007年
,本文編號:2275686
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2275686.html