多自由度碰撞系統(tǒng)的動力學(xué)研究
[Abstract]:In recent years, experts at home and abroad have made great progress in the study of the Hopf bifurcation of the periodic motion of the two-degree-of-freedom collision vibration system with one degree of freedom or one side rigid constraint, but the system parameters are more complex and the dynamic response formula is more complicated. There is little research on the multi-degree-of-freedom impact vibration system which is sensitive to the stability of the system, and the research method is mainly numerical analysis. However, the problem of shock vibration often exists in engineering practice, such as machinery, vehicle and so on. It is urgent to understand the dynamic behavior of this kind of system more comprehensively. Therefore, in engineering practice, it is of great significance to study the impact vibration system with multiple degrees of freedom with clearance, so this paper makes a comprehensive analysis of the impact vibration system with two degrees of freedom and the impact vibration system with four degrees of freedom. The main contents of this paper are as follows: 1. In this paper, the dynamic behaviors of two typical two degree of freedom impact vibration systems and a four degree of freedom impact vibration system are analyzed. By establishing the physical and mathematical models of the impact vibration system, the regular mode matrix method is used to decouple the impact vibration system. The analytical solution and linearization matrix of the periodic motion of the collisional vibration system and the Poincare map of each system are obtained by using the analytical method. 2. The instability and bifurcation of fixed point of planar mapping are analyzed by using Poincare mapping theory. When the eigenvalue of the linearization matrix is 1 or -1, the saddle node or doubling bifurcation may occur. When the linear matrix has a double eigenvalue passing through the unit circle, the system will have a codimensional two-bifurcation phenomenon. By selecting appropriate system parameters and combining with the trend diagram of linear matrix eigenvalue traversing unit circle, the dynamical behavior of bifurcation and chaotic evolution of linear matrix eigenvalue in the above cases is analyzed. 3. In this paper, the complex dynamical behavior of Hopf bifurcation and chaos is studied for the physical model of a specific multi-degree-of-freedom collisional vibration system, and the ergodic almost periodic motion of the system is given. Poincare section of periodic motion and torus doubling to chaos. 4. Based on the results of numerical simulation, the influence of the main control parameters on the periodic motion of the system is analyzed. It is found that the high dimensional impact vibration system has a high sensitivity, especially the excitation frequency. The parameters such as clearance and recovery coefficient have great influence on the periodic motion of the system. Therefore, it is necessary to select the optimal parameters of the system for the optimal design of the mechanical impact vibration system.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH113.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 樂源,謝建華,丁旺才;一類兩自由度碰撞振動系統(tǒng)的Hopf分岔和混沌[J];動力學(xué)與控制學(xué)報;2004年03期
2 丁旺才,謝建華,李國芳;三自由度碰撞振動系統(tǒng)的周期運(yùn)動穩(wěn)定性與分岔[J];工程力學(xué);2004年03期
3 李萬祥,丁旺才,周勇;一類三自由度含間隙系統(tǒng)的分岔與混沌[J];工程力學(xué);2005年05期
4 羅冠煒;俞建寧;堯輝明;褚衍東;;小型振動沖擊式打樁機(jī)的周期運(yùn)動和分岔[J];工程力學(xué);2006年07期
5 馬永靖;丁旺才;;碰撞振動系統(tǒng)四階共振下的Hopf分岔和次諧分岔[J];工程力學(xué);2007年07期
6 丁旺才;張有強(qiáng);張慶爽;;含干摩擦振動系統(tǒng)的非線性動力學(xué)分析[J];工程力學(xué);2008年10期
7 張艷龍;王麗;;三自由度雙側(cè)剛性約束振動系統(tǒng)的概周期運(yùn)動[J];工程力學(xué);2009年02期
8 劉彥琦;張偉;;參數(shù)激勵粘彈性傳動帶的分岔和混沌特性[J];工程力學(xué);2010年01期
9 申延智;劉宏民;熊杰;杜國君;;厚板軋機(jī)含間隙主傳動系統(tǒng)混沌動力學(xué)分析[J];工程力學(xué);2010年07期
10 羅冠煒,謝建華;一類含間隙振動系統(tǒng)的周期運(yùn)動穩(wěn)定性、分岔與混沌形成過程研究[J];固體力學(xué)學(xué)報;2003年03期
相關(guān)博士學(xué)位論文 前8條
1 張耀強(qiáng);陀螺儀轉(zhuǎn)子系統(tǒng)非線性動力特性及穩(wěn)定性分析[D];西安電子科技大學(xué);2011年
2 馮治恒;螺旋錐齒輪多體多自由度非線性動力學(xué)研究[D];重慶大學(xué);2010年
3 丁旺才;多自由度碰撞振動系統(tǒng)的環(huán)面分岔與混沌研究[D];西南交通大學(xué);2004年
4 沈建和;非線性振動系統(tǒng)的分岔、混沌及相關(guān)控制[D];中山大學(xué);2008年
5 王煒;待定固有頻率法與非線性動力系統(tǒng)的復(fù)雜動力學(xué)[D];天津大學(xué);2009年
6 高美娟;六維非線性系統(tǒng)的復(fù)雜動力學(xué)研究[D];北京工業(yè)大學(xué);2010年
7 呂樂豐;軸向行進(jìn)弦及索的非線性振動和穩(wěn)定性分析[D];大連理工大學(xué);2010年
8 趙德敏;非線性顫振系統(tǒng)的分岔與混沌[D];天津大學(xué);2010年
,本文編號:2270614
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2270614.html