天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機(jī)械論文 >

多自由度碰撞系統(tǒng)的動力學(xué)研究

發(fā)布時間:2018-10-14 13:32
【摘要】:近幾年來,國內(nèi)外專家對單自由度或單側(cè)剛性約束兩自由度碰撞振動系統(tǒng)周期運(yùn)動的Hopf分岔問題研究已經(jīng)取得了較大進(jìn)展,而對于系統(tǒng)參數(shù)比較復(fù)雜、動態(tài)響應(yīng)式較繁瑣、參數(shù)對系統(tǒng)的穩(wěn)定性影響較敏感的多自由度碰撞振動系統(tǒng)的研究甚少,研究方法也主要為數(shù)值分析。然而,沖擊振動問題在機(jī)械、車輛等工程實(shí)踐中經(jīng)常存在,迫切需要對此類系統(tǒng)的動態(tài)行為有更全面的了解。因此,在工程實(shí)踐中,對含間隙多自由度碰撞振動系統(tǒng)的研究有重要的意義,因而本文就對兩自由度碰撞振動系統(tǒng)和四自由度碰撞振動系統(tǒng)的情況做了全面的分析。本文主要內(nèi)容為: 1.本文全面分析了兩類典型的兩自由度碰撞振動系統(tǒng)和一類四自由度碰撞振動系統(tǒng)的動力學(xué)行為。通過建立碰撞振動系統(tǒng)的物理模型和數(shù)學(xué)模型,利用正則模態(tài)矩陣法對碰撞振動系統(tǒng)進(jìn)行解耦,并用解析法求解了碰撞振動系統(tǒng)周期運(yùn)動的解析解和線性化矩陣和各個系統(tǒng)的Poincare映射。 2.利用Poincare映射理論對平面映射不動點(diǎn)失穩(wěn)和分岔情況進(jìn)行分析。當(dāng)線性化矩陣的某個特征值為1或-1時,系統(tǒng)可能會發(fā)生鞍結(jié)或倍化分岔:當(dāng)線性化矩陣有二重特征值穿越單位圓時,系統(tǒng)會發(fā)生余維二分岔現(xiàn)象。選擇適當(dāng)?shù)南到y(tǒng)參數(shù),結(jié)合線性化矩陣特征值橫截單位圓周的趨勢圖,分析線性化矩陣特征值在上述情況下,系統(tǒng)發(fā)生分岔與混沌演化的動力學(xué)行為。 3.針對具體的多自由度碰撞振動系統(tǒng)的物理模型,研究了系統(tǒng)在何時參數(shù)下發(fā)生Hopf分岔和混沌的復(fù)雜動力學(xué)行為,給出了系統(tǒng)歷經(jīng)概周期運(yùn)動、周期運(yùn)動和環(huán)面倍化向混沌演化的Poincare截面圖。 4.利用數(shù)值仿真的結(jié)果,分析了系統(tǒng)的主要控制參數(shù)對系統(tǒng)周期運(yùn)動的影響,發(fā)現(xiàn)高維碰撞振動系統(tǒng)的敏感性較高,尤其激勵頻率,間隙和恢復(fù)系數(shù)等參數(shù)對系統(tǒng)周期運(yùn)動對系統(tǒng)周期運(yùn)動的影響較大,因此,選取系統(tǒng)的最優(yōu)參數(shù)對機(jī)械碰撞振動系統(tǒng)得優(yōu)化設(shè)計是必要的。
[Abstract]:In recent years, experts at home and abroad have made great progress in the study of the Hopf bifurcation of the periodic motion of the two-degree-of-freedom collision vibration system with one degree of freedom or one side rigid constraint, but the system parameters are more complex and the dynamic response formula is more complicated. There is little research on the multi-degree-of-freedom impact vibration system which is sensitive to the stability of the system, and the research method is mainly numerical analysis. However, the problem of shock vibration often exists in engineering practice, such as machinery, vehicle and so on. It is urgent to understand the dynamic behavior of this kind of system more comprehensively. Therefore, in engineering practice, it is of great significance to study the impact vibration system with multiple degrees of freedom with clearance, so this paper makes a comprehensive analysis of the impact vibration system with two degrees of freedom and the impact vibration system with four degrees of freedom. The main contents of this paper are as follows: 1. In this paper, the dynamic behaviors of two typical two degree of freedom impact vibration systems and a four degree of freedom impact vibration system are analyzed. By establishing the physical and mathematical models of the impact vibration system, the regular mode matrix method is used to decouple the impact vibration system. The analytical solution and linearization matrix of the periodic motion of the collisional vibration system and the Poincare map of each system are obtained by using the analytical method. 2. The instability and bifurcation of fixed point of planar mapping are analyzed by using Poincare mapping theory. When the eigenvalue of the linearization matrix is 1 or -1, the saddle node or doubling bifurcation may occur. When the linear matrix has a double eigenvalue passing through the unit circle, the system will have a codimensional two-bifurcation phenomenon. By selecting appropriate system parameters and combining with the trend diagram of linear matrix eigenvalue traversing unit circle, the dynamical behavior of bifurcation and chaotic evolution of linear matrix eigenvalue in the above cases is analyzed. 3. In this paper, the complex dynamical behavior of Hopf bifurcation and chaos is studied for the physical model of a specific multi-degree-of-freedom collisional vibration system, and the ergodic almost periodic motion of the system is given. Poincare section of periodic motion and torus doubling to chaos. 4. Based on the results of numerical simulation, the influence of the main control parameters on the periodic motion of the system is analyzed. It is found that the high dimensional impact vibration system has a high sensitivity, especially the excitation frequency. The parameters such as clearance and recovery coefficient have great influence on the periodic motion of the system. Therefore, it is necessary to select the optimal parameters of the system for the optimal design of the mechanical impact vibration system.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH113.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 樂源,謝建華,丁旺才;一類兩自由度碰撞振動系統(tǒng)的Hopf分岔和混沌[J];動力學(xué)與控制學(xué)報;2004年03期

2 丁旺才,謝建華,李國芳;三自由度碰撞振動系統(tǒng)的周期運(yùn)動穩(wěn)定性與分岔[J];工程力學(xué);2004年03期

3 李萬祥,丁旺才,周勇;一類三自由度含間隙系統(tǒng)的分岔與混沌[J];工程力學(xué);2005年05期

4 羅冠煒;俞建寧;堯輝明;褚衍東;;小型振動沖擊式打樁機(jī)的周期運(yùn)動和分岔[J];工程力學(xué);2006年07期

5 馬永靖;丁旺才;;碰撞振動系統(tǒng)四階共振下的Hopf分岔和次諧分岔[J];工程力學(xué);2007年07期

6 丁旺才;張有強(qiáng);張慶爽;;含干摩擦振動系統(tǒng)的非線性動力學(xué)分析[J];工程力學(xué);2008年10期

7 張艷龍;王麗;;三自由度雙側(cè)剛性約束振動系統(tǒng)的概周期運(yùn)動[J];工程力學(xué);2009年02期

8 劉彥琦;張偉;;參數(shù)激勵粘彈性傳動帶的分岔和混沌特性[J];工程力學(xué);2010年01期

9 申延智;劉宏民;熊杰;杜國君;;厚板軋機(jī)含間隙主傳動系統(tǒng)混沌動力學(xué)分析[J];工程力學(xué);2010年07期

10 羅冠煒,謝建華;一類含間隙振動系統(tǒng)的周期運(yùn)動穩(wěn)定性、分岔與混沌形成過程研究[J];固體力學(xué)學(xué)報;2003年03期

相關(guān)博士學(xué)位論文 前8條

1 張耀強(qiáng);陀螺儀轉(zhuǎn)子系統(tǒng)非線性動力特性及穩(wěn)定性分析[D];西安電子科技大學(xué);2011年

2 馮治恒;螺旋錐齒輪多體多自由度非線性動力學(xué)研究[D];重慶大學(xué);2010年

3 丁旺才;多自由度碰撞振動系統(tǒng)的環(huán)面分岔與混沌研究[D];西南交通大學(xué);2004年

4 沈建和;非線性振動系統(tǒng)的分岔、混沌及相關(guān)控制[D];中山大學(xué);2008年

5 王煒;待定固有頻率法與非線性動力系統(tǒng)的復(fù)雜動力學(xué)[D];天津大學(xué);2009年

6 高美娟;六維非線性系統(tǒng)的復(fù)雜動力學(xué)研究[D];北京工業(yè)大學(xué);2010年

7 呂樂豐;軸向行進(jìn)弦及索的非線性振動和穩(wěn)定性分析[D];大連理工大學(xué);2010年

8 趙德敏;非線性顫振系統(tǒng)的分岔與混沌[D];天津大學(xué);2010年

,

本文編號:2270614

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2270614.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4af1c***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com