基于TFSI的水潤滑尾軸承潤滑性能研究
[Abstract]:As one of the most important equipments in ship propulsion system, stern bearing plays an important role in supporting stern shaft and propeller. According to the lubricating medium, the tail bearing can be generally divided into oil lubrication and water lubrication. Marine oil lubricated tail bearings have some disadvantages such as complicated structure, oil leakage pollution and vibration noise, which can be avoided by water lubrication. However, because of the low viscosity of water, the bearing capacity of water lubricated rubber tail bearing is small. On the other hand, because rubber material is a kind of high elasticity, nonlinear, low resistance to high temperature. Considering the disadvantages of rubber materials, it is necessary to study the structure-heat flow coupling of water-lubricated rubber bearings in order to improve the lubricating performance of tail-bearing. It has important theoretical significance and engineering application value for prolonging bearing service life, reducing vibration and noise, and realizing "green shipping". Taking the circumferential section of water-lubricated rubber bearing as an object of study, the flow pressure lubrication problem of water-lubricated tail bearing is numerically analyzed by using large-scale finite element ADINA method, and the lubrication law is revealed. The influence of bearing structure and operating conditions on its lubricating performance (bearing pressure distribution, bearing temperature distribution, friction coefficient, etc.) is discussed. The main research results are as follows: (1) the plane CSD,CFD and TFSI models of marine water-lubricated rubber bearings are established, including the definition of coupling surface between fluid and solid and the setting and control of thermal field. (2) the maximum pressure of water-lubricated rubber bearing decreases with the increase of flume width, increases with the increase of rubber layer thickness, and decreases with the increase of bearing clearance. When the bearing clearance is less than or equal to 1mm, When the bearing clearance is larger than 1mm, the maximum bearing pressure tends to be stable, and the maximum temperature decreases obviously with the increase of bearing flume width, and increases with the increase of rubber layer thickness. It decreases with the increase of bearing clearance. (3) the maximum pressure of water-lubricated rubber bearing increases with the increase of eccentricity, but not with a linear relationship, but with the pressure rising slowly before eccentricity is less than 0.6. When the eccentricity ratio is greater than 0.6, the range of pressure change increases. The maximum temperature curve with eccentricity is basically similar to the maximum pressure distribution curve, and the maximum pressure of bearing decreases with the increase of offset angle, but the amplitude of decrease is very small, and the maximum temperature change of bearing is similar. (4) when the rotational speed is above 400r/min, the maximum pressure and temperature of the bearing increase with the increase of the rotational speed, and the pressure distribution of the bearing is basically unchanged when the axial velocity of the bearing is changed. The maximum bearing pressure and maximum temperature increase with the water temperature of the bearing working. (5) the test on the tail bearing bench shows that the friction coefficient of the bearing is small under the condition of elastohydrodynamic lubrication. At the same time, with the increase of shaft speed, the friction coefficient of bearing decreases first, then increases slightly. The temperature of lubricating outlet pipe increases with the increase of shaft speed, but the amplitude of increase is smaller.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH133.3
【參考文獻】
相關(guān)期刊論文 前10條
1 周春良;劉順隆;鄭洪濤;;船舶艉管軸承內(nèi)部流場數(shù)值分析[J];船舶工程;2006年03期
2 姚世衛(wèi);胡宗成;馬斌;周旭輝;;橡膠軸承研究進展及在艦艇上的應(yīng)用分析[J];艦船科學(xué)技術(shù);2005年S1期
3 衣雪娟,王優(yōu)強;水潤滑軸承研究進展[J];機床與液壓;2004年04期
4 周建輝;劉正林;朱漢華;海鵬洲;;船舶水潤滑橡膠尾軸承摩擦性能試驗研究[J];武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版);2008年05期
5 盧磊;王家序;肖科;;基于ANSYS多物理場的水潤滑軸承的數(shù)值分析[J];機械設(shè)計;2010年10期
6 王優(yōu)強,楊成仁;八縱向溝水潤滑橡膠軸承潤滑性能研究[J];潤滑與密封;2001年04期
7 余江波,王家序,彭晉民;長徑比對水潤滑塑料合金軸承摩擦系數(shù)的影響[J];潤滑與密封;2002年03期
8 王優(yōu)強,李鴻琦;水潤滑賽龍軸承及其潤滑性能綜述[J];潤滑與密封;2003年01期
9 王家序,余江波,田凡,鄒丞;水潤滑塑料合金軸承數(shù)值分析的多重網(wǎng)格法[J];潤滑與密封;2005年04期
10 周春良;劉順隆;;水潤滑船舶艉管軸承內(nèi)部流場數(shù)值分析[J];潤滑與密封;2005年06期
相關(guān)博士學(xué)位論文 前2條
1 陳戰(zhàn);水潤滑軸承的摩擦磨損性能及潤滑機理的研究[D];重慶大學(xué);2003年
2 余江波;基于資源節(jié)約與環(huán)境友好的高性能水潤滑軸承關(guān)鍵技術(shù)研究[D];重慶大學(xué);2006年
相關(guān)碩士學(xué)位論文 前4條
1 饒河清;基于FLUENT軟件的多孔質(zhì)靜壓軸承的仿真與實驗研究[D];哈爾濱工業(yè)大學(xué);2006年
2 張艷芹;基于FLUENT的靜壓軸承流場及溫度場研究[D];哈爾濱理工大學(xué);2007年
3 劉琴華;船舶尾軸承水潤滑特性數(shù)值計算與試驗研究[D];武漢理工大學(xué);2008年
4 華細金;基于FLUENT的縱向溝槽水潤滑軸承流體潤滑數(shù)值分析[D];重慶大學(xué);2009年
,本文編號:2258719
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2258719.html