振動(dòng)信號(hào)離線(xiàn)分析系統(tǒng)及旋轉(zhuǎn)機(jī)械故障診斷應(yīng)用研究
本文選題:集成經(jīng)驗(yàn)?zāi)B(tài)分解 + 本征時(shí)間尺度分解; 參考:《上海交通大學(xué)》2013年碩士論文
【摘要】:風(fēng)機(jī)、壓縮機(jī)和汽輪機(jī)等旋轉(zhuǎn)機(jī)械設(shè)備廣泛應(yīng)用于現(xiàn)代化工業(yè)生產(chǎn)實(shí)踐中,對(duì)這些設(shè)備開(kāi)展?fàn)顟B(tài)監(jiān)測(cè)與故障診斷工作,保障設(shè)備安全可靠的運(yùn)行,具有重要的經(jīng)濟(jì)意義和社會(huì)意義。根據(jù)振動(dòng)信號(hào)對(duì)旋轉(zhuǎn)機(jī)械進(jìn)行狀態(tài)監(jiān)測(cè)與故障診斷目前是設(shè)備管理維護(hù)的主要手段。對(duì)振動(dòng)信號(hào)進(jìn)行特征提取和分析,是進(jìn)行準(zhǔn)確診斷的必要前提。 本文實(shí)現(xiàn)并改進(jìn)了多種振動(dòng)信號(hào)處理方法,并將其集成到《振動(dòng)信號(hào)離線(xiàn)分析系統(tǒng)》之中,應(yīng)用系統(tǒng)對(duì)仿真信號(hào)、實(shí)驗(yàn)室模擬信號(hào)和工程實(shí)際信號(hào)進(jìn)行了全方位的分析,驗(yàn)證了算法的準(zhǔn)確性和有效性。二十余種信號(hào)處理方法使得該系統(tǒng)功能豐富,算法上的改進(jìn)使其分析效果更加理想,對(duì)提高我國(guó)旋轉(zhuǎn)機(jī)械的故障診斷系統(tǒng)水平具有重要意義。 在此基礎(chǔ)上,,深入研究了集成經(jīng)驗(yàn)?zāi)B(tài)分解(EEMD)和固有時(shí)間尺度(ITD)方法。EEMD是在經(jīng)驗(yàn)?zāi)J椒纸猓‥MD)的基礎(chǔ)上通過(guò)引入白噪聲改進(jìn)EMD缺點(diǎn)的一種新方法;ITD作為非平穩(wěn)信號(hào)的有效信號(hào)處理方法,具有計(jì)算效率高等優(yōu)點(diǎn)。EEMD和ITD兩種方法都有效的解決了EMD方法的端點(diǎn)效應(yīng)、模式混疊等缺點(diǎn)。本文不僅通過(guò)仿真信號(hào)對(duì)EMD、EEMD和ITD的分析效果進(jìn)行了對(duì)比,總結(jié)了三種信號(hào)處理方法的優(yōu)缺點(diǎn),而且應(yīng)用EEMD、ITD對(duì)齒輪實(shí)驗(yàn)臺(tái)和水泥廠高溫風(fēng)機(jī)進(jìn)行故障診斷,獲取了設(shè)備的故障特征。 音頻信號(hào)與振動(dòng)信號(hào)均包含著機(jī)組運(yùn)行狀態(tài)信息,兩者相結(jié)合能夠獲取設(shè)備更加全面的信息。因此,本文在對(duì)利用振動(dòng)信號(hào)對(duì)旋轉(zhuǎn)機(jī)械進(jìn)行故障診斷的基礎(chǔ)上,以風(fēng)力發(fā)電機(jī)組傳動(dòng)系統(tǒng)為研究對(duì)象,提出了聲振耦合的分析方法。該方法的提出為旋轉(zhuǎn)機(jī)械故障診斷提供了一個(gè)新的思路,將此方法應(yīng)用到風(fēng)力發(fā)電機(jī)組傳動(dòng)系統(tǒng)的整機(jī)評(píng)估和故障診斷中具有明顯效果。
[Abstract]:Rotating machinery, such as fans, compressors and steam turbines, is widely used in modern industrial production practices. The monitoring and fault diagnosis of these equipment is carried out to ensure the safe and reliable operation of the equipment. It has important economic and social significance. State monitoring and fault diagnosis of rotating machinery based on vibration signal are the main means of equipment management and maintenance. Feature extraction and analysis of vibration signal is a necessary prerequisite for accurate diagnosis. In this paper, a variety of vibration signal processing methods are realized and improved, and integrated into the "Vibration signal Off-Line Analysis system". The simulation signal, the laboratory analog signal and the engineering actual signal are analyzed in all directions by the application of the system. The accuracy and validity of the algorithm are verified. More than 20 kinds of signal processing methods make the system rich in function, and the improvement of algorithm makes the analysis effect more ideal. It is of great significance to improve the level of fault diagnosis system of rotating machinery in China. On this basis, the methods of integrated empirical mode decomposition (EEMD) and inherent time scale (ITD) are studied. EEMD is a new method to improve the shortcomings of EMD by introducing white noise on the basis of empirical mode decomposition (EMD). ITD, as an effective signal processing method for non-stationary signals, has the advantages of high computational efficiency. Both EEMD and ITD can effectively solve the endpoints effect and mode aliasing of EMD. This paper not only compares the analysis results of EMDEEMD and ITD by simulation signal, summarizes the advantages and disadvantages of three signal processing methods, but also applies EEMD-ITD to fault diagnosis of gear test table and high temperature fan in cement plant. The fault characteristics of the equipment are obtained. Both audio signal and vibration signal contain the operation state information of the unit, and the combination of the two signals can obtain more comprehensive information of the equipment. Therefore, on the basis of fault diagnosis of rotating machinery using vibration signals, this paper presents an analysis method of acoustic-vibration coupling based on wind turbine transmission system. This method provides a new idea for the fault diagnosis of rotating machinery, and the application of this method to the whole machine evaluation and fault diagnosis of wind turbine transmission system has obvious effect.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:TH165.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳桂清;朱院娟;郭斯羽;朱志杰;;基于LabVIEW的旋轉(zhuǎn)機(jī)械振動(dòng)在線(xiàn)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)[J];傳感器與微系統(tǒng);2012年06期
2 安學(xué)利;蔣東翔;陳杰;劉超;;基于ITD和LS-SVM的風(fēng)力發(fā)電機(jī)組軸承故障診斷[J];電力自動(dòng)化設(shè)備;2011年09期
3 張千鋒;林富生;;基于LabVIEW和RMS幅值譜的齒輪故障診斷[J];機(jī)電產(chǎn)品開(kāi)發(fā)與創(chuàng)新;2008年01期
4 朱金龍;邱曉暉;;正交多項(xiàng)式擬合在EMD算法端點(diǎn)問(wèn)題中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2006年23期
5 陳季萍,楊瑞軍;利用倒頻譜診斷液壓泵早期故障[J];機(jī)械設(shè)計(jì)與制造;2005年09期
6 王紅軍;付瑤;;基于多項(xiàng)式擬合的EMD端點(diǎn)效應(yīng)處理方法研究[J];機(jī)械設(shè)計(jì)與制造;2010年10期
7 劉平;岳林;劉永富;;基于LabVIEW的旋轉(zhuǎn)機(jī)械振動(dòng)監(jiān)測(cè)系統(tǒng)開(kāi)發(fā)[J];機(jī)械科學(xué)與技術(shù);2011年04期
8 李崇晟,屈梁生;齒輪早期疲勞裂紋的混沌檢測(cè)方法[J];機(jī)械工程學(xué)報(bào);2005年08期
9 劉紅星,陳濤,屈梁生,李振武,于立柱;能量算子解調(diào)方法及其在機(jī)械信號(hào)解調(diào)中的應(yīng)用[J];機(jī)械工程學(xué)報(bào);1998年05期
10 張玲玲;駱詩(shī)定;肖云魁;趙懿冠;廖紅云;;集合經(jīng)驗(yàn)?zāi)J椒纸庠诓裼蜋C(jī)機(jī)械故障診斷中的應(yīng)用[J];科學(xué)技術(shù)與工程;2010年27期
本文編號(hào):2113568
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2113568.html