整體往復(fù)式壓縮機曲軸力學(xué)性能研究與安全評價
本文選題:整體往復(fù)式壓縮機 + 安全評價 ; 參考:《西南石油大學(xué)》2014年博士論文
【摘要】:整體往復(fù)式壓縮機是石油天然氣行業(yè)增壓集輸?shù)闹匾獎恿υO(shè)備,壓縮機安全運行是天然氣增產(chǎn)的重要保證,目前天然氣壓縮機的管理仍是采取基于傳統(tǒng)的計劃性維修和事故后處理的模式。隨著機組使用年限的增加事故率也隨之上升,機組安全運行是油氣田管理者十分關(guān)注的問題,特別是老、舊機組及超期服役機組的安全運行狀況令人擔(dān)憂。壓縮機整體安全性評價正是為滿足這種需求而提出的,本文基于整體往復(fù)式壓縮機安全評價思想出發(fā),提出壓縮機系統(tǒng)評價和部件評價相結(jié)合的方法,并根據(jù)部件安全性和經(jīng)濟性權(quán)重不同,依據(jù)專家評分與層次分析法計算得出部件權(quán)重系數(shù),建立整體安全性評價方法。 整體往復(fù)式壓縮機的燃氣發(fā)動機和壓縮機撬裝在一個底座上,共用一根曲軸,承擔(dān)著動力傳遞樞紐的作用。作為壓縮機關(guān)鍵核心部件的曲軸在機組運行過程中承受著隨時間周期性變化的沖擊、振動等交變載荷。正是這些交變載荷的存在,使得曲軸產(chǎn)生彎曲、扭轉(zhuǎn)及彎扭等復(fù)雜變形,曲軸力學(xué)特性不僅影響著曲軸的使用壽命,而且直接關(guān)系到機組整體的安全性和穩(wěn)定性,在此基礎(chǔ)上開展對曲軸力學(xué)性能研究和安全評價。 本文針對ZTY470型整體往復(fù)式壓縮機曲軸結(jié)構(gòu),對其進行力學(xué)分析和評價研究,通過對曲軸結(jié)構(gòu)運動動力分析、熱力分析及各軸頸載荷研究確定曲軸承受的交變載荷,獲得作用在各曲柄銷上的切向力、法向力及扭矩等外部載荷。根據(jù)實際結(jié)構(gòu)簡化力學(xué)分析模型,建立超靜定方程。并結(jié)合有限元軟件對整體往復(fù)式壓縮機曲軸進行靜力學(xué)分析、模態(tài)分析,在軸系模態(tài)分析的基礎(chǔ)上,施加時間歷程載荷對軸系進行瞬態(tài)響應(yīng)分析,根據(jù)分析結(jié)果對曲軸分別進行了靜強度和疲勞強度校核。然后,根據(jù)曲軸無損檢測結(jié)果是否含有裂紋缺陷分別建立安全評價模型。對無裂紋缺陷曲軸結(jié)構(gòu)根據(jù)材料S-N曲線、疲勞壽命累積準則,以及現(xiàn)場歷史載荷統(tǒng)計建立塊狀載荷譜,建立壓縮機曲軸疲勞壽命評價模型;對于檢出含有裂紋缺陷的曲軸結(jié)構(gòu),對裂紋缺陷進行工程化處理成為有效的裂紋尺寸,通過對裂紋尖端應(yīng)力應(yīng)變等場強分析、表面半橢圓裂紋應(yīng)力強度因子計算等,結(jié)合Paris裂紋擴展速率公式,建立含裂紋缺陷曲軸的剩余壽命評價模型。這樣,便建立了壓縮機曲軸無裂紋缺陷和含裂紋缺陷兩種模式下的安全評價和剩余壽命預(yù)測模型。為修正和完善對曲軸的評價,針對性的開展了曲軸材料拉伸試驗(屈服強度、抗拉強度)、疲勞強度(疲勞極限、S-N曲線)及斷裂測試(斷裂韌性、裂紋擴展門檻值及裂紋穩(wěn)定擴展階段擴展速率),獲得曲軸材料安全評價的力學(xué)性能參數(shù)和結(jié)構(gòu)參數(shù),以修正和完善評價結(jié)果的可靠性。在此基礎(chǔ)上,為方便對壓縮機的安全運行進行評價及曲軸等部件的受力分析和評價,編制了天然氣壓縮機安全使用評價CSA Versionl.0評價軟件。 因此,本文提出整體往復(fù)式壓縮機安全評價方法、曲軸力學(xué)性能研究和安全評價方法,為油氣田單位壓縮機安全管理提出一種有效的評價措施,也為目前仍在使用的老、舊機組乃至超期服役機組的報廢標準提供一種合理的理論依據(jù)。
[Abstract]:The overall reciprocating compressor is an important power equipment for the turbocharging and transporting in the oil and gas industry. The safe operation of the compressor is an important guarantee for the increase of gas production. At present, the management of the gas compressor is still based on the traditional planned maintenance and post accident treatment mode. The safe operation of the unit is a concern of the oil and gas field managers, especially the old, the safety operation of the old unit and the overdue service unit is worrying. The overall safety evaluation of the compressor is put forward to meet this demand. Based on the overall evaluation idea of the integral reciprocating compressor, this paper puts forward the evaluation of the compressor system and the evaluation of the compressor system. The method of component evaluation is combined. According to the safety and economic weight of components, the weight coefficient of components is calculated according to the expert score and the analytic hierarchy process, and the overall safety evaluation method is established.
The gas engine and compressor of the whole reciprocating compressor are pry mounted on a base and shared a crankshaft to bear the function of the power transfer hub. The crankshaft, as the key core component of the compressor, bears the impact of periodic changes during the operation of the unit, such as the alternating load of vibration and so on. It is the existence of these alternating loads. The crankshaft has complicated deformation such as bending, torsion and bending. The mechanical characteristics of crankshaft not only affect the life of crankshaft, but also directly relate to the safety and stability of the whole unit. On this basis, the mechanical properties of crankshaft are studied and safety evaluation is carried out.
In this paper, the mechanical analysis and evaluation of the crankshaft structure of the ZTY470 type integral reciprocating compressor are carried out. Through the dynamic analysis of the crankshaft structure, the thermodynamic analysis and the study of the journal load, the alternating load on the crankshaft is determined, and the external loads, such as the tangential force, the normal force and the torque on the crankshaft, are obtained. The structure simplifies the mechanical analysis model and establishes the hyper static equation. Combined with the finite element software, the static analysis and modal analysis of the crankshaft of the whole reciprocating compressor are carried out. On the basis of the modal analysis of the shaft system, the transient response analysis of the shaft system is carried out by applying the time history load, and the static strength and fatigue of the crankshaft are carried out respectively according to the analysis results. Then, a safety evaluation model is established for the crankshaft nondestructive testing results to contain crack defects. The fatigue life evaluation model of the compressor crankshaft is set up based on the material S-N curve, the cumulative fatigue life cumulative criterion, and the statistics of the field historical load, and the fatigue life evaluation model of the compressor crankshaft is established. With the crack defect of the crankshaft structure, the crack defect is engineered to be an effective crack size. Through the analysis of the stress and strain of the crack tip, the stress intensity factor calculation of the semi elliptical crack on the surface and the formula of the Paris crack propagation rate, the residual life evaluation model of the crackle defect crankshaft is established. The safety evaluation and residual life prediction model under two modes of crackle defect and crack defect in compressor crankshaft are established. In order to correct and improve the evaluation of crankshaft, the tensile test of crankshaft material (yield strength, tensile strength), fatigue strength (fatigue limit, S-N curve) and fracture testing (fracture toughness, crack propagation) are carried out. The mechanical performance parameters and structural parameters of the crankshaft material safety evaluation are obtained to correct and improve the reliability of the evaluation results. On this basis, the natural gas compressor safety is compiled to evaluate the safety of the compressor and to analyze and evaluate the force of the crankshaft. Full use evaluation CSA Versionl.0 evaluation software.
Therefore, this paper puts forward the safety evaluation method of the integral reciprocating compressor, the research on the mechanical properties of the crankshaft and the method of safety evaluation, and puts forward an effective evaluation measure for the safety management of the unit compressor in oil and gas field, and provides a reasonable theoretical basis for the old, old unit and even the overdue service unit, which is still in use.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TH45
【參考文獻】
相關(guān)期刊論文 前10條
1 周素霞;楊廣雪;謝云葉;肖楠;;基于損傷力學(xué)的車軸材料疲勞裂紋擴展的數(shù)值分析[J];北京交通大學(xué)學(xué)報;2008年01期
2 鄭曉陽,謝基龍,繆龍秀,呂澎民;16Mn 鋼焊接接頭的 Miner 疲勞累積損傷可靠性模型研究[J];北方交通大學(xué)學(xué)報;1999年01期
3 路萍,吳斌;層次分析法在高等院?萍荚u價系統(tǒng)中的應(yīng)用[J];北京工業(yè)大學(xué)學(xué)報;2002年03期
4 張丁非;戴慶偉;胡耀波;齊福剛;李鵬程;;塑性損傷的發(fā)展與應(yīng)用[J];材料工程;2011年01期
5 陳波;李付國;何敏;;延性金屬材料損傷變量的實驗表征方法研究[J];稀有金屬材料與工程;2011年11期
6 楊曉華,姚衛(wèi)星,段成美;確定性疲勞累積損傷理論進展[J];中國工程科學(xué);2003年04期
7 王柏輝;吳健;;往復(fù)式壓縮機的維護與故障分析[J];甘肅科技;2008年22期
8 蔡定濱,余秀琴,朱應(yīng)祿;壓縮機曲軸斷裂分析[J];國外金屬熱處理;2002年05期
9 侯祺棕;液化石油氣企業(yè)的安全評價[J];工業(yè)安全與防塵;1995年02期
10 關(guān)迪;孫秦;楊鋒平;;一個修正的金屬材料低周疲勞損傷模型[J];固體力學(xué)學(xué)報;2013年06期
相關(guān)博士學(xué)位論文 前3條
1 潘永杰;鐵路鋼橋全壽命過程可靠性分析方法研究[D];中國鐵道科學(xué)研究院;2011年
2 吳躍成;驅(qū)動橋疲勞可靠性分析與試驗方法研究[D];浙江大學(xué);2008年
3 楊宇宙;復(fù)合材料身管的損傷研究[D];南京理工大學(xué);2013年
,本文編號:2101549
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2101549.html