基于速度滑移和溫度階躍的螺旋槽干氣密封氣膜流場研究
本文選題:干氣密封 + 能量方程; 參考:《蘭州理工大學(xué)》2014年碩士論文
【摘要】:螺旋槽干氣密封被廣泛應(yīng)用于石化行業(yè)中,其穩(wěn)定且可靠的的運(yùn)行直接關(guān)系到石油化工企業(yè)的安全問題。近年來,在干氣密封的密封性能方面有了更深入的研究,使干氣密封的應(yīng)用范圍得到了極大的提高,從運(yùn)行的低轉(zhuǎn)速和低壓力擴(kuò)大到高轉(zhuǎn)速和高壓力。在介質(zhì)壓力和運(yùn)轉(zhuǎn)速度較高的工作狀態(tài)下螺旋槽干氣密封的密封端面間會(huì)產(chǎn)生較大的熱量,從而使運(yùn)行不穩(wěn)定和泄漏量增大。本文通過引入螺旋槽干氣密封氣體流動(dòng)的二階速度滑移邊界條件,對(duì)干氣密封的密封端面間氣膜的非線性動(dòng)力學(xué)行為進(jìn)行研究,求得干氣密封中相應(yīng)的動(dòng)力學(xué)方程。同時(shí)引入溫度階躍邊界條件并推導(dǎo)出氣膜的能量微分方程。通過密封環(huán)的熱彈變形理論和二階非線性速度滑移邊界條件來分析研究螺旋槽干氣密封的密封性能,本文主要的研究內(nèi)容和結(jié)論如下: 在速度滑移邊界條件下,求出螺旋槽干氣密封密封端面間氣膜的壓力和速度,然后推導(dǎo)出氣膜的無熱耗散能量方程及有熱耗散能量方程,進(jìn)而利用氣膜的壓力、速度和能量方程,通過Maple和Matlab軟件求解槽內(nèi)氣膜的溫度分布。然后由氣膜溫度對(duì)密封環(huán)變形的影響,求出密封環(huán)的熱變形量,從而求出干氣密封密封端面間氣膜的厚度。最后利用由雷諾方程推導(dǎo)出的泄漏量方程求得螺旋槽干氣密封的理論泄漏量,并將理論泄漏量與實(shí)驗(yàn)測得的泄漏量作比較。研究結(jié)果表明:隨著密封氣體從密封環(huán)的外徑流入內(nèi)徑,干氣密封氣膜的溫度先升高,當(dāng)氣體到達(dá)槽根部附近時(shí)溫度達(dá)到最高,然后再隨著氣體的繼續(xù)流入氣膜溫度逐漸降低;密封環(huán)由溫度引起的幾何變形量與氣膜溫度的變化一致,然而密封端面間氣膜厚度的分布與密封環(huán)的熱彈變形量相反;隨著密封環(huán)熱彈變形量的增加,干氣密封中的泄漏量也隨之增大;考慮熱彈變形下的泄漏量與實(shí)驗(yàn)測得泄漏量數(shù)值較接近;熱耗散下考慮熱彈變形的泄漏量最接近于實(shí)驗(yàn)值。 根據(jù)速度滑移邊界條件,求出氣膜壓力和氣膜速度;然后推導(dǎo)出氣膜的能量微分方程,同時(shí)引入溫度階躍邊界條件,進(jìn)而利用氣膜的壓力、速度和能量方程,通過Matlab軟件數(shù)值計(jì)算得到三維坐標(biāo)下氣膜的溫度分布。研究結(jié)果表明:隨著氣體從密封環(huán)外徑流入內(nèi)徑,氣膜速度的分布規(guī)律是先降低后升高,槽根部周圍速度較低;隨著密封氣體從密封環(huán)的外徑流入內(nèi)徑,干氣密封氣膜的溫度先升高,當(dāng)氣體到達(dá)槽根部附近時(shí)溫度達(dá)到最高,然后再隨著氣體的繼續(xù)流入氣膜溫度逐漸降低,另外氣膜厚度方向上氣膜中間位置溫度較高;考慮溫度階躍下的溫度分布與不考慮溫度階躍下的溫度分布相差較小,因此在對(duì)干氣密封密封端面間氣膜溫度場研究時(shí)可以忽略溫度階躍對(duì)其的影響。 在流體的二階速度滑移邊界條件下對(duì)雷諾方程進(jìn)行推導(dǎo),得出修正的廣義雷諾方程,并通過PH線性化法和迭代法對(duì)修正型雷諾方程進(jìn)行求解,從而推導(dǎo)出氣膜的開啟力方程。然后由氣膜溫度對(duì)密封環(huán)變形的影響,求出密封環(huán)的熱彈變形量,從而得到干氣密封密封端面間氣膜的厚度。進(jìn)而利用氣膜剛度為開啟力與氣膜厚度之比求出氣膜剛度。然后通過建立熱彈變形下氣膜剛度和氣體泄漏量之間的協(xié)調(diào)函數(shù),對(duì)剛漏比目標(biāo)函數(shù)進(jìn)行數(shù)值計(jì)算,從而對(duì)干氣密封的螺旋角進(jìn)行優(yōu)化,得到特定工況下相對(duì)應(yīng)的最優(yōu)螺旋角。研究結(jié)果表明:隨著密封氣體從密封環(huán)的外徑流入內(nèi)徑,干氣密封的剛漏比先增大,當(dāng)氣體到達(dá)螺旋槽根部附近時(shí)達(dá)到最大值,隨著氣體的繼續(xù)流入剛漏比減小;剛漏比隨著螺旋角的變化成非線性趨勢,在剛漏比最大時(shí)得到優(yōu)化的最佳螺旋角。
[Abstract]:The spiral groove dry gas seal is widely used in the petrochemical industry. Its stable and reliable operation is directly related to the safety problem of petrochemical enterprises. In recent years, the sealing performance of dry gas seal has been studied more deeply, and the application range of dry gas seal has been greatly improved, from low running speed and low pressure. At high speed and high pressure, large heat is generated between the seal face of the spiral groove dry gas seal in the working state of high medium pressure and running speed, which makes the operation unstable and the leakage increase. In this paper, the seal end of dry gas seal is introduced by introducing the two order velocity slip boundary condition of the spiral groove dry gas seal gas flow. The nonlinear dynamic behavior of the air film is studied, and the corresponding dynamic equation in the dry gas seal is obtained. The temperature step boundary condition is introduced and the energy differential equation of the gas film is derived. The seal of the spiral groove dry gas seal is analyzed by the thermal elastic deformation theory of the seal ring and the two order nonlinear velocity slip boundary condition. The main contents and conclusions of this paper are as follows:
Under the velocity slip boundary condition, the pressure and velocity of the gas film between the seal face of the spiral groove dry gas seal are obtained. Then the heat dissipation energy equation and the heat dissipation equation are derived. Then the pressure, velocity and energy equation of the gas film are used to solve the temperature distribution of the gas film in the slot by Maple and Matlab software. Then the gas film is made by the gas film. The effect of temperature on the deformation of the seal ring is obtained. The thermal deformation of the seal ring is calculated, and the thickness of the gas film between the seal face of the dry gas seal is obtained. Finally, the leakage amount of the spiral groove dry gas seal is obtained by the leakage equation derived from Reynolds equation. The theoretical leakage is compared with the measured leakage. The results show that the leakage of the seal ring is compared with the measured leakage. As the airtight gas flows from the outer diameter of the seal ring into the inner diameter, the temperature of the dry gas seal gas film rises first, the temperature reaches the highest when the gas reaches the root of the trough, and then gradually decreases with the continuous flow of gas into the gas film temperature, and the geometric deformation caused by the temperature of the seal ring is consistent with the change of the gas film temperature, but the seal face is between the end face. The distribution of gas film thickness is the opposite of the thermal elastic deformation of the seal ring; with the increase of the thermal elastic deformation of the seal ring, the leakage amount in the dry gas seal increases, and the leakage of the thermal elastic deformation is close to the experimental result, and the leakage amount considering the thermal elastic deformation is closest to the experimental value under the heat dissipation.
According to the velocity slip boundary condition, the gas film pressure and gas film velocity are obtained. Then the energy differential equation of the gas film is derived. At the same time, the temperature step boundary condition is introduced. Then the pressure, velocity and energy equation of the gas film are used to calculate the temperature distribution of the gas film under the three-dimensional coordinates through the Matlab software. The results show that the temperature distribution of the gas film is obtained by the numerical calculation. When the gas flows from the outer diameter of the seal ring into the inner diameter, the distribution of gas film velocity is reduced first and then rising, and the velocity of the groove is low around the root. As the sealing gas flows from the outer diameter of the seal ring into the inner diameter, the temperature of the dry gas seal gas film rises first, and the temperature reaches the highest when the gas reaches the root of the trough, and then goes into the gas film as the gas continues to flow into the gas film. The temperature gradually decreases, and the temperature distribution in the gas film thickness is higher in the direction of the gas film thickness. Considering the temperature distribution under the temperature step, the difference between the temperature distribution and the temperature step is small. Therefore, the temperature step can be ignored when the temperature field is studied between the seal face of the dry gas seal.
The Reynolds equation is derived from the two order velocity slip boundary condition of the fluid, and the modified generalized Reynolds equation is obtained. The modified Reynolds equation is solved by PH linearization and iterative method, and the opening force equation of the gas film is derived. Then the effect of the gas film temperature on the seal ring deformation is obtained, and the thermal elastic deformation of the seal ring is obtained. The film stiffness between the air film stiffness and the film thickness is obtained by using the film stiffness as the ratio of the opening force to the gas film thickness. Then by establishing the coordination function between the film stiffness and the gas leakage, the numerical calculation of the stiffness leakage ratio objective function is carried out, thus the spiral angle of the dry gas seal is obtained. The results show that as the sealing gas flows from the outer diameter of the sealing ring into the inner diameter, the stiffness leakage ratio of the dry gas seal increases first, when the gas reaches the root of the spiral groove, the maximum value is reached, and the stiffness leakage ratio decreases with the continuous flow of the gas, and the stiffness leakage ratio changes with the spiral angle. The optimal helix angle is obtained when the maximum leakage ratio is the largest.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TH136
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 段春玲;干氣密封在重整循環(huán)氫壓縮機(jī)上的應(yīng)用[J];遼陽石油化工高等?茖W(xué)校學(xué)報(bào);2000年02期
2 Arvind Godse,劉學(xué)榮;干氣密封(續(xù))[J];中國設(shè)備管理;2001年04期
3 陳志;干氣密封的工作原理及設(shè)計(jì)計(jì)算[J];機(jī)械;2002年03期
4 魏宇桑;煤代油工程中氨冷凍壓縮機(jī)干氣密封形式的選擇[J];化工進(jìn)展;2003年07期
5 李濤子,張秋翔,蔡紀(jì)寧,李雙喜;T型槽干氣密封穩(wěn)態(tài)特性的有限元分析[J];北京化工大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年02期
6 劉昕;離心壓縮機(jī)干氣密封的故障處理[J];流體機(jī)械;2004年04期
7 王和順,陳次昌,黃澤沛,王新霖;干氣密封啟停端面脫開方案的理論研究[J];機(jī)床與液壓;2004年10期
8 魏宇桑;氨冷凍壓縮機(jī)干氣密封型式的選擇[J];壓縮機(jī)技術(shù);2003年06期
9 何玉杰,蘇本林,賓超波,劉玉琴;化工流程泵用干氣密封的設(shè)計(jì)與應(yīng)用[J];通用機(jī)械;2003年02期
10 孔森嚴(yán);Flowserve干氣密封失效的原因及應(yīng)對(duì)措施[J];通用機(jī)械;2003年06期
相關(guān)會(huì)議論文 前10條
1 程香平;彭旭東;孟祥鎧;白少先;;T槽干氣密封流壓場的數(shù)值模擬[A];2011年全國青年摩擦學(xué)與表面工程學(xué)術(shù)會(huì)議論文集[C];2011年
2 譚清德;;28AT型干氣密封在CO_2壓縮機(jī)上的應(yīng)用研討[A];全國化肥工業(yè)技術(shù)交流會(huì)論文資料集[C];2004年
3 何萬里;;國產(chǎn)干氣密封在延遲焦化裝置富氣壓縮機(jī)上的應(yīng)用[A];2004年全國化工、石化裝備國產(chǎn)化暨設(shè)備管理技術(shù)交流會(huì)會(huì)議論文集[C];2004年
4 朱立新;;丙烷壓縮機(jī)干氣密封的改造[A];蘇、冀、皖、贛、鄂石油學(xué)會(huì)第22屆學(xué)術(shù)年會(huì)論文集[C];2004年
5 許靜;彭旭東;孟祥鎧;白少先;;非接觸端面氣體潤滑密封熱效應(yīng)影響數(shù)值分析[A];2011年全國青年摩擦學(xué)與表面工程學(xué)術(shù)會(huì)議論文集[C];2011年
6 陳志;;干氣密封的工作原理及設(shè)計(jì)計(jì)算[A];加入WTO和中國科技與可持續(xù)發(fā)展——挑戰(zhàn)與機(jī)遇、責(zé)任和對(duì)策(下冊)[C];2002年
7 張?jiān)懒?彭旭東;白少先;孟祥鎧;李紀(jì)云;;直線變深T型槽干氣密封性能研究[A];2011年全國青年摩擦學(xué)與表面工程學(xué)術(shù)會(huì)議論文集[C];2011年
8 胡克;;5號(hào)空分液空泵干氣密封改進(jìn)[A];2004全國能源與熱工學(xué)術(shù)年會(huì)論文集(2)[C];2004年
9 王和順;陳次昌;黃澤沛;王新霖;;干氣密封啟停端面脫開方案的理論研究[A];機(jī)床與液壓學(xué)術(shù)研討會(huì)論文集[C];2004年
10 王和順;陳次昌;黃澤沛;王新霖;;干氣密封啟停端面脫開方案的理論研究[A];第三屆全國流體傳動(dòng)及控制工程學(xué)術(shù)會(huì)議論文集(第二卷)[C];2004年
相關(guān)重要報(bào)紙文章 前10條
1 記者 謝文艷;大慶石化加氫裂化裝置高壓干氣密封實(shí)現(xiàn)國產(chǎn)化[N];中國石油報(bào);2008年
2 穆鈺;天津石化干氣密封確保裝置穩(wěn)定運(yùn)行[N];中國化工報(bào);2003年
3 通訊員 常勇;遼化機(jī)械廠亮出精品[N];中國石油報(bào);2003年
4 記者 姜斯雄邋楚海虹 通訊員 周毅;福氣平安進(jìn)萬家[N];中國石油報(bào);2008年
5 魏靜;國產(chǎn)干氣密封技術(shù)打破進(jìn)口依賴[N];中國企業(yè)報(bào);2008年
6 韓志國 王茂桓;大慶石化腈綸廠細(xì)化節(jié)能降耗[N];中國工業(yè)報(bào);2006年
7 封葑;沈鼓成套市場實(shí)現(xiàn)“零”突破[N];沈陽日報(bào);2007年
8 李蘭芳 宋德松 常瀚之;人才戰(zhàn)略托起“創(chuàng)新高地”[N];天津日報(bào);2004年
9 沈文;國產(chǎn)化需新思路新技術(shù)新工藝[N];中國石化報(bào);2010年
10 楊世璋;十六年低調(diào)蓄勢 一朝井噴式發(fā)力--約翰克蘭圖霸密封高端市場[N];中國工業(yè)報(bào);2005年
相關(guān)博士學(xué)位論文 前5條
1 張偉政;干氣密封非線性動(dòng)力穩(wěn)定性分析及其響應(yīng)優(yōu)化[D];蘭州理工大學(xué);2012年
2 韓明君;熱流固耦合下的螺旋槽干氣密封特性及失穩(wěn)分析[D];蘭州理工大學(xué);2012年
3 王和順;干氣密封運(yùn)行狀態(tài)穩(wěn)定性的研究[D];西南交通大學(xué);2006年
4 王維民;離心壓縮機(jī)軸位移故障自愈調(diào)控及密封改進(jìn)增效技術(shù)研究[D];北京化工大學(xué);2006年
5 徐潔;微尺度器件及旋轉(zhuǎn)干氣密封微間隙內(nèi)流體流動(dòng)問題的研究[D];上海交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 扈中平;低溫干氣密封裝置流固耦合有限元分析[D];北京化工大學(xué);2011年
2 劉薇;干氣密封在甲醇合成壓縮機(jī)中的應(yīng)用及改進(jìn)[D];河北科技大學(xué);2012年
3 胡曉鵬;T槽干氣密封動(dòng)力學(xué)性能研究[D];昆明理工大學(xué);2013年
4 宋文博;壓縮機(jī)平衡盤干氣密封的研究[D];北京化工大學(xué);2010年
5 劉飛;靜壓干氣密封研究[D];西華大學(xué);2010年
6 周越;干氣密封槽型對(duì)氣動(dòng)參數(shù)影響的研究[D];天津大學(xué);2012年
7 楊環(huán);靜壓干氣密封流場數(shù)值模擬及其參數(shù)優(yōu)化[D];蘭州理工大學(xué);2012年
8 尹志剛;干氣密封在常減壓瓦斯氣螺桿壓縮機(jī)上的應(yīng)用與研究[D];北京化工大學(xué);2013年
9 陶丹萍;組合螺旋型槽干氣密封泄漏特性研究[D];南京林業(yè)大學(xué);2013年
10 譚清德;28AT型干氣密封裝置的應(yīng)用研究及其改進(jìn)[D];四川大學(xué);2004年
,本文編號(hào):2081835
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2081835.html