履帶式起重機(jī)整車結(jié)構(gòu)分析及轉(zhuǎn)臺(tái)優(yōu)化
發(fā)布時(shí)間:2018-06-24 13:48
本文選題:履帶起重機(jī) + 主臂; 參考:《吉林大學(xué)》2011年碩士論文
【摘要】:現(xiàn)代經(jīng)濟(jì)的快速發(fā)展推動(dòng)了一系列的工程建設(shè),特別是國(guó)家在石化、風(fēng)電及核電的建設(shè)為履帶起重機(jī)提供了充分的發(fā)展條件。履帶起重機(jī)是現(xiàn)代化建設(shè)中必備的工程機(jī)械,由于作業(yè)環(huán)境的多樣性、帶載行駛、爬坡等特殊的工作狀態(tài)為履帶起重機(jī)的設(shè)計(jì)提出更高的要求。履帶起重機(jī)的設(shè)計(jì)水平直接影響到吊重量和工作的安全性,產(chǎn)品的設(shè)計(jì)必須用力學(xué)分析來校核,根據(jù)力學(xué)分析的結(jié)果對(duì)其設(shè)計(jì)提出合理的改進(jìn)和要求,為其提供可靠的計(jì)算依據(jù)。這樣,力學(xué)分析在起重機(jī)的設(shè)計(jì)過程中的重要性也就越來越大,準(zhǔn)確的計(jì)算數(shù)據(jù)和結(jié)果是設(shè)計(jì)出高效和安全的起重機(jī)的必要條件。本文就是通過對(duì)履帶起重機(jī)的計(jì)算,為臂架和下車進(jìn)行了詳細(xì)的力學(xué)受力分析,并通過計(jì)算結(jié)果對(duì)結(jié)構(gòu)提出修改和意見,通過ANSYS的優(yōu)化功能,最終得到轉(zhuǎn)臺(tái)結(jié)構(gòu)最優(yōu)設(shè)計(jì)方案,既滿足了結(jié)構(gòu)的剛度和強(qiáng)度要求,又減少了材料,降低了生產(chǎn)成本,實(shí)現(xiàn)了高效、安全的履帶起重機(jī)設(shè)計(jì)方案。 針對(duì)履帶起重機(jī)的結(jié)構(gòu)組成,將履帶起重機(jī)分為上車(主要為臂架)和下車(包括履帶梁、轉(zhuǎn)臺(tái)、車架和四輪一帶),本文主要根據(jù)履帶起重機(jī)的不同的組成部分分別進(jìn)行了不同的力學(xué)分析,具體的工作內(nèi)容和研究成果如下: 1)主臂的解析法和有限元計(jì)算。首先利用解析法,根據(jù)公司設(shè)計(jì)人員最初提供的數(shù)據(jù)對(duì)主臂危險(xiǎn)工況進(jìn)行校核,由于主臂最大吊重工況時(shí),主臂的軸力最大,主弦桿最危險(xiǎn),所以將主臂最大吊重工況定典型工況。在該工況下,計(jì)算主臂弦桿的應(yīng)力,根據(jù)計(jì)算結(jié)果初步設(shè)定臂架的大部分尺寸,反饋給公司技術(shù)人員。其次,建立主臂的三維模型,利用網(wǎng)格劃分工具,建立主臂的有限元模型,在ANSYS中組裝并進(jìn)行靜力計(jì)算,并與解析法計(jì)算結(jié)果進(jìn)行對(duì)比,確定計(jì)算結(jié)果的準(zhǔn)確性,為設(shè)計(jì)提供可靠的計(jì)算依據(jù)。對(duì)最長(zhǎng)主臂進(jìn)行穩(wěn)定性分析,首先根據(jù)材料力學(xué)計(jì)算細(xì)長(zhǎng)桿臨界力公式,得出解析法計(jì)算結(jié)果,其次基于ANSYS特征值屈曲計(jì)算方法,計(jì)算屈曲載荷,與解析法計(jì)算結(jié)果進(jìn)行對(duì)比,并分析計(jì)算結(jié)果。 2)下車的有限元計(jì)算。對(duì)于轉(zhuǎn)臺(tái)結(jié)構(gòu)進(jìn)行靜力計(jì)算,選取典型工況,對(duì)其進(jìn)行約束加載,分析計(jì)算結(jié)果并提出轉(zhuǎn)臺(tái)有很大的優(yōu)化空間,制定初步優(yōu)化方案,為下面轉(zhuǎn)臺(tái)優(yōu)化作出鋪墊。對(duì)于履帶梁和車架進(jìn)行組裝計(jì)算,利用ANSYS的接觸單元來模擬實(shí)際的受力狀況。利用ANSYS接觸單元來模擬實(shí)際的連接方式,給出計(jì)算結(jié)果的詳細(xì)分析,保證了設(shè)計(jì)有據(jù)可尋,明確了下車的受力狀況。 3)轉(zhuǎn)臺(tái)的優(yōu)化計(jì)算。根據(jù)對(duì)轉(zhuǎn)臺(tái)靜力計(jì)算結(jié)果的分析,經(jīng)過與公司技術(shù)人員協(xié)商,對(duì)轉(zhuǎn)臺(tái)整體外形輪廓板厚度進(jìn)行優(yōu)化。將這些板的厚度設(shè)為設(shè)計(jì)變量,基于ANSYS中的優(yōu)化模塊,對(duì)履帶起重機(jī)轉(zhuǎn)臺(tái)結(jié)構(gòu)進(jìn)行優(yōu)化,在保證足夠的剛度和強(qiáng)度的前提下,精減材料,降低產(chǎn)品重量,節(jié)約生產(chǎn)成本。優(yōu)化的思想為計(jì)算結(jié)果提升了高度,最優(yōu)設(shè)計(jì)日漸成為設(shè)計(jì)的最終目標(biāo)。
[Abstract]:The rapid development of modern economy has promoted a series of engineering construction, especially in the country in petrochemical, wind power and nuclear power construction for crawler crane to provide sufficient conditions for development. Crawler crane is the necessary engineering machinery in the modernization construction, because of the diversity of operating environment, carrying, climbing, and other special working conditions for the performance of the track The design of the crane has a higher requirement. The design level of the crawler crane directly affects the lifting weight and the safety of the work. The design of the product must be checked with mechanical analysis. The reasonable improvement and requirements for its design are put forward according to the results of mechanical analysis, and a reliable calculation basis is provided for it. In this way, the mechanical analysis is weighed. The importance of the design of the machine is becoming more and more important. Accurate calculation of data and results is a necessary condition for the design of a high efficient and safe crane. In this paper, through the calculation of the crawler crane, a detailed mechanical stress analysis is carried out for the arm and the train, and the structure is modified and suggested through the calculation and through the ANS. In the end, the optimal design of YS has been obtained, which not only satisfies the requirements of the stiffness and strength of the structure, but also reduces the material, reduces the production cost, and realizes a high efficient and safe design of the crawler crane.
According to the structure of the crawler crane, the crawler crane is divided into the truck (mainly for the arm frame) and the car (including the track beam, the turntable, the frame and the four wheel). In this paper, the different mechanical analysis is carried out according to the different parts of the crawler crane, and the work content and the research results are as follows:
1) the analytic method and the finite element calculation of the main arm. First, the analysis method is used to check the dangerous working conditions of the main arm based on the data provided by the company designers. The main arm's axis force is maximum and the main chord is most dangerous, so the typical working condition of the main arm is determined by the maximum lifting condition of the main arm. According to the calculation results, the majority of the dimensions of the arm frame are initially set and fed back to the technical personnel of the company. Secondly, the three-dimensional model of the main arm is set up, the finite element model of the main arm is established by the grid division tool, and the static calculation is carried out in the ANSYS, and the results are compared with the analytical calculation results to determine the accuracy of the calculation results. The design provides reliable basis for calculation. The stability analysis of the longest main arm is carried out. First, the formula of the critical force of the long rod is calculated according to the mechanics of material. The results of the analytical method are obtained. Secondly, the buckling load is calculated based on the ANSYS eigenvalue buckling calculation method, and the results are compared with the analytical results and the results are analyzed.
2) the finite element calculation of the train. Take the static calculation of the structure of the turntable, select the typical working conditions, carry on the constraint loading, analyze the calculation results and put forward the great optimization space for the turntable, make the preliminary optimization plan, make the paving for the optimization of the following turntable. The assembly calculation of the track beam and the frame, and the contact unit of the ANSYS The actual stress condition is simulated. ANSYS contact element is used to simulate the actual connection mode, and the detailed analysis of the calculation results is given. The design is ensured and the force condition of the car is clearly defined.
3) the optimization calculation of the turntable. According to the analysis of the static calculation results of the turntable, through consultation with the technical personnel of the company, the thickness of the overall outline plate of the turntable is optimized. The thickness of these plates is set as the design variable. Based on the optimization module in ANSYS, the structure of the crawler crane turntable is optimized, guaranteeing sufficient stiffness and strength. Under the premise, the material is reduced, the weight of the product is reduced and the production cost is saved. The thought of optimization has raised the height of the calculation result, and the optimal design is becoming the ultimate goal of the design.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:TH213.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 王鳳萍;程磊;孫影;;國(guó)內(nèi)外履帶式起重機(jī)的現(xiàn)狀及發(fā)展趨勢(shì)[J];工程機(jī)械;2006年04期
2 秦義校,唐風(fēng);桁架式臂架布局優(yōu)化設(shè)計(jì)[J];港口裝卸;1996年05期
3 谷禮新,鄭海斌,彭衛(wèi)平;塔式起重機(jī)起重臂結(jié)構(gòu)和穩(wěn)定性有限元分析[J];機(jī)電工程技術(shù);2005年08期
4 杜平安;有限元網(wǎng)格劃分的基本原則[J];機(jī)械設(shè)計(jì)與制造;2000年01期
5 高一平,王欣,高順德,鄭亞輝;200噸履帶起重機(jī)履帶架結(jié)構(gòu)設(shè)計(jì)與有限元分析[J];機(jī)械設(shè)計(jì)與制造;2004年01期
6 王凱,周慎杰;80噸履帶起重機(jī)桁架式臂架系統(tǒng)的有限元分析[J];機(jī)械設(shè)計(jì)與研究;2005年05期
,本文編號(hào):2061727
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2061727.html
最近更新
教材專著