并聯(lián)型先導(dǎo)控制電液伺服閥的數(shù)學(xué)模型及控制算法研究
本文選題:并聯(lián)先導(dǎo)級 + 數(shù)學(xué)模型。 參考:《浙江大學(xué)》2012年碩士論文
【摘要】:隨著電液伺服系統(tǒng)在重大裝備中的廣泛應(yīng)用,對大流量電液伺服閥的快響應(yīng)指標(biāo)的要求越來越高。采用傳統(tǒng)串聯(lián)型先導(dǎo)控制結(jié)構(gòu)的伺服閥在解決“大流量”與“高頻響”這對矛盾時,遇到了難以逾越的困難。而并聯(lián)型伺服控制方案已成為解決該問題的重要研究方向。其中,基于并聯(lián)型先導(dǎo)控制的伺服閥是解決該矛盾最有效的解決方案;诓⒙(lián)型先導(dǎo)控制原理,建立并聯(lián)型先導(dǎo)控制電液伺服閥的準(zhǔn)確仿真模型,對并聯(lián)型先導(dǎo)級的非對稱參數(shù)匹配和基于并聯(lián)先導(dǎo)級的伺服閥主級位置閉環(huán)分段非線性協(xié)同控制方案進(jìn)行了仿真與試驗研究。研究表明,此方案可同時實現(xiàn)大流量高頻響伺服閥在兩個工作點之間大范圍跳變的階躍響應(yīng)和在一個工作點附近的高頻調(diào)整頻率響應(yīng)性能指標(biāo)的優(yōu)化,為我國大流量、高頻響電液伺服技術(shù)的新發(fā)展奠定了重要的理論基礎(chǔ),并進(jìn)一步地拓寬了電液伺服閥的應(yīng)用領(lǐng)域。 論文的第一章在簡要介紹電液伺服閥在現(xiàn)代電液控制系統(tǒng)中實現(xiàn)大流量、高頻響的迫切性的基礎(chǔ)上,分析了電液伺服閥在實現(xiàn)大流量和高頻響之間出現(xiàn)的矛盾,并指出了其技術(shù)難點。通過對電液伺服閥在大流量、高頻響以及相關(guān)控制方法方面的研究現(xiàn)狀的分析,更進(jìn)一步明確了該課題的研究意義與價值;最后,提出了本課題的研究目標(biāo)與主要研究內(nèi)容,使以后的研究工作明確了研究思路。 論文的第二章對并聯(lián)先導(dǎo)控制電液伺服閥的組成及各部分工作機理進(jìn)行了詳細(xì)的分析,建立了各主要組成部分的數(shù)學(xué)模型并推導(dǎo)出傳遞函數(shù),最后得出研究對象的頻域數(shù)學(xué)模型,根據(jù)數(shù)學(xué)模型在理論上分析了一些參數(shù)對主閥動態(tài)特性的影響。最后,基于AMESim仿真軟件建立了研究對象的仿真模型,并通過試驗驗證了仿真模型在時域和頻域的正確性,為后續(xù)的研究分析奠定了基礎(chǔ); 論文的第三章基于仿真模型對管道參數(shù)和蓄能器參數(shù)對主閥動態(tài)特性的影響進(jìn)行了仿真分析,得出了一些結(jié)論,并利用遺傳算法對參數(shù)的匹配性進(jìn)行優(yōu)化設(shè)計;采用FLUENT軟件對主閥液動力進(jìn)行了仿真計算,并將對應(yīng)的液動力系數(shù)應(yīng)用于AMESim仿真模型中,并對外流式和內(nèi)流式的液動力情況進(jìn)行分析,得出了內(nèi)流式時液動力較小的定性結(jié)論,結(jié)合主閥工作壓差變化大的特性對分析了穩(wěn)態(tài)液動力隨閥口壓降變化的變化情況;基于AMESim仿真模型,提出了解決主閥在開啟階段B口上壓時閥芯出現(xiàn)震蕩現(xiàn)象的問題和并聯(lián)先導(dǎo)閥組零位漂移現(xiàn)象引起的控制特性不可靠問題的解決方案; 論文的第四章分析了流量增益、流量——壓力系數(shù)和壓力增益三個系數(shù)對系統(tǒng)控制特性的影響,基于仿真模型對分段線性控制和分段非線性控制兩種控制方法的控制特性做了仿真研究,提出分段非線性的控制方法是解決高頻響大流量矛盾的最有效控制方法。介紹了主級閉環(huán)分段非線性控制的控制策略和控制方案,基于仿真模型確定了主閥在大范圍調(diào)整到小范圍調(diào)整的切換點最優(yōu)值,為后續(xù)的實驗研究奠定了基礎(chǔ)。 為了對并聯(lián)先導(dǎo)控制大流量電液伺服閥進(jìn)行試驗研究,搭建了大流量閥測試試驗臺。論文的第五章對大流量閥測試實驗臺和試驗方法做了簡單介紹,試驗方法上采用matlab與NI數(shù)據(jù)采集卡通訊實現(xiàn)數(shù)據(jù)處理,采用matlab_xpc系統(tǒng)對測試系統(tǒng)實時控制;將分段非線性控制方法應(yīng)用于并聯(lián)先導(dǎo)控制電液伺服閥的試驗研究,主要對主閥的階躍響應(yīng)特性、頻響特性和滯環(huán)特性進(jìn)行了試驗研究,重點驗證了仿真模型在時域和頻域的正確性以及仿真模型中的出的結(jié)論的正確性。 論文的第六章對本課題已完成的研究情況作了全面的總結(jié),并指出了在研究工作中存在的問題,提出了以后應(yīng)開展的研究工作的重點。
[Abstract]:With the extensive application of the electro-hydraulic servo system in the important equipment, the demand for the fast response index of the large flow electro-hydraulic servo valve is getting higher and higher. The servo valve with the traditional series pilot control structure has encountered difficulties in solving the contradiction between the "large flow" and "high frequency". The parallel servo control scheme has already been encountered. The servo valve based on parallel pilot control is the most effective solution to the problem. Based on the parallel pilot control principle, the accurate simulation model of the parallel pilot controlled electro-hydraulic servo valve is established, and the asymmetrical parameter matching of the parallel pilot stage and the parallel pilot grade are based on the parallel pilot control principle. The simulation and Experimental Research on the closed-loop piecewise nonlinear cooperative control scheme for the main position of the servo valve are carried out. The study shows that the scheme can simultaneously realize the step response of the high frequency high frequency sound servo valve in large range between two working points and the optimization of the frequency response performance index near a working point for our country. The new development of large flow and high frequency electro hydraulic servo technology has laid an important theoretical foundation and further widened the application field of electro-hydraulic servo valve.
On the basis of the urgency of realizing large flow and high frequency noise in modern electro-hydraulic control system, the first chapter of the paper analyzes the contradiction between the high flow and high frequency response of the electro-hydraulic servo valve, and points out its technical difficulties. Through the high flow, high frequency response and the related control side of the electro-hydraulic servo valve in the electro-hydraulic servo valve. The analysis of the present research status of the law further clarifies the significance and value of the research. Finally, the research objectives and main research contents are put forward, which makes the research work clear in the future.
The second chapter of the paper makes a detailed analysis of the composition and working mechanism of the electro-hydraulic servo valve with parallel pilot control, establishes a mathematical model of the main components and derives the transfer function. Finally, the mathematical model of the frequency domain of the research object is obtained. The mathematical model is used to analyze the dynamic characteristics of the main valve according to the mathematical model. Finally, based on the AMESim simulation software, the simulation model of the research object is set up, and the correctness of the simulation model in the time and frequency domain is verified by the experiment, which lays the foundation for the subsequent research and analysis.
The third chapter of the thesis is based on simulation model to simulate the influence of pipe parameters and accumulator parameters on the dynamic characteristics of the main valve. Some conclusions are obtained, and the genetic algorithm is used to optimize the matching of the parameters. The FLUENT software is used to simulate the hydraulic power of the main valve, and the corresponding hydraulic coefficient should be calculated. In the AMESim simulation model, the fluid dynamic situation of the external flow and the internal flow is analyzed. The qualitative conclusion of the small hydrodynamic force in the inner flow is obtained. The change of the steady liquid power with the pressure drop of the valve port is analyzed with the characteristics of the main valve working pressure difference. Based on the AMESim simulation model, the solution of the main valve is proposed. In the early stage, the problem of oscillation of the spool on the B port and the solution to the unreliable control characteristic caused by the zero drift of the parallel pilot valve group are discussed.
The fourth chapter of the paper analyzes the influence of the flow gain, the flow rate, the pressure coefficient and the pressure gain on the control characteristics of the system. Based on the simulation model, the control characteristics of the two control methods of piecewise linear control and piecewise nonlinear control are simulated, and the piecewise nonlinear control method is proposed to solve the high frequency loud and large flow. The most effective control method of the quantity contradiction is introduced. The control strategy and control scheme of the main level closed loop piecewise nonlinear control are introduced. Based on the simulation model, the optimal value of the switching point for the main valve to be adjusted in a large range to a small range is determined, which lays a foundation for the subsequent experimental research.
In order to test and study the large flow electro-hydraulic servo valve with parallel pilot control, a test test rig for large flow valve is set up. The fifth chapter of the paper introduces the test test bed and the test method of the large flow valve. The test method adopts the communication of MATLAB and NI data acquisition card to realize the data processing, and the test system is adopted by the matlab_xpc system. The piecewise nonlinear control method is applied to the experimental study of a parallel pilot controlled electro-hydraulic servo valve. The step response characteristics, frequency response characteristics and hysteresis characteristics of the main valve are studied. The correctness of the simulation model in the time and frequency domain and the conclusion of the simulation model are verified.
The sixth chapter of the paper makes a comprehensive summary of the research situation that has been completed, and points out the existing problems in the research work, and puts forward the focus of the research work that should be carried out in the future.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH137.52
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 喬繼紅;施冰;戴亞平;王洪艷;;電液伺服系統(tǒng)的小波自適應(yīng)魯棒反演控制[J];北京理工大學(xué)學(xué)報;2008年05期
2 黃飛;楊玉兵;邵利民;;基于Matlab/xPC Target的BPH調(diào)速器實時仿真試驗臺研究[J];柴油機;2006年04期
3 許大好;李詢;謝倩;;用Matlab控制NI數(shù)據(jù)采集卡實現(xiàn)實時數(shù)據(jù)采集[J];常州工學(xué)院學(xué)報;2006年05期
4 張弓;于蘭英;柯堅;;高頻動圈式電-機械轉(zhuǎn)換器[J];電機與控制學(xué)報;2007年03期
5 李小慶,陳柏金;伺服滑閥建模與動態(tài)仿真[J];鍛壓裝備與制造技術(shù);2005年01期
6 程偉;程文波;李燦平;;基于MATLAB的實時數(shù)據(jù)采集與分析研究[J];電子測量技術(shù);2008年08期
7 王勇勤,張云飛,嚴(yán)興春,田文波;伺服閥非線性特性建模的液壓彎輥系統(tǒng)動態(tài)特性[J];重慶大學(xué)學(xué)報(自然科學(xué)版);2005年11期
8 吳振順;電液伺服系統(tǒng)的魯棒自適應(yīng)控制的研究[J];工程機械;1996年08期
9 李其朋,丁凡;電液伺服閥技術(shù)研究現(xiàn)狀及發(fā)展趨勢[J];工程機械;2003年06期
10 趙陽;徐兵;周盛;;高速開關(guān)閥液動力補償研究[J];工程機械;2008年08期
相關(guān)博士學(xué)位論文 前2條
1 李其朋;直動式電液伺服閥關(guān)鍵技術(shù)的研究[D];浙江大學(xué);2005年
2 張弓;超高速電液比例閥的研究[D];西南交通大學(xué);2009年
相關(guān)碩士學(xué)位論文 前1條
1 阮曉芳;帶長管道閥控系統(tǒng)的動態(tài)特性研究[D];浙江大學(xué);2003年
,本文編號:2059325
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2059325.html