裝載機(jī)工作裝置的精細(xì)控制模式研究
發(fā)布時(shí)間:2018-06-20 14:42
本文選題:裝載機(jī) + 比例減壓閥; 參考:《吉林大學(xué)》2011年碩士論文
【摘要】:隨著機(jī)電一體化技術(shù)的發(fā)展,電液比例技術(shù)得到了很快的發(fā)展和普及,在現(xiàn)在工程車(chē)輛的控制系統(tǒng)上,電液比例技術(shù)有著廣泛應(yīng)用。裝載機(jī)作為一種工程基礎(chǔ)建設(shè)最常用的工程車(chē)輛,提高其控制系統(tǒng)性能以及簡(jiǎn)化操作過(guò)程都是非常重要和緊迫的。尤其是對(duì)于惡劣的工作環(huán)境,使用電液比例技術(shù)代替單純依靠液壓操作具有很大的優(yōu)勢(shì)。這不僅可以降低勞動(dòng)強(qiáng)度,更重要的是提高操作精度,帶來(lái)生產(chǎn)效率的提高。 由于先導(dǎo)手柄在換向過(guò)程中受到彈簧力、液動(dòng)力、摩擦力等因素的影響,并隨著裝載機(jī)功率和流量的增加而增加,這不僅會(huì)使操作力增大,操作者很容易疲勞,而且先導(dǎo)手柄的控制壓力范圍一定時(shí),裝載機(jī)主閥的先導(dǎo)控制壓力和先導(dǎo)手柄不能完全的匹配。這都會(huì)使先導(dǎo)手柄不能精確的控制主閥芯的流量,甚至?xí)斐闪髁客蝗辉黾踊驕p少,進(jìn)而造成斗或臂的突然沖擊,對(duì)整個(gè)機(jī)械性能造成很大的損壞。本文利用電子技術(shù)對(duì)主閥芯的先導(dǎo)壓力進(jìn)行控制,將傳感技術(shù)和脈寬調(diào)制技術(shù)綜合應(yīng)用實(shí)現(xiàn)對(duì)電液比例閥進(jìn)行精確的控制。本文主要圍繞著裝載機(jī)的液壓控制系統(tǒng)和電氣控制系統(tǒng)進(jìn)行討論和研究。 裝載機(jī)工作裝置的液壓系統(tǒng)主要由鏟斗和動(dòng)臂組成,鏟斗和動(dòng)臂由兩組非對(duì)稱液壓缸驅(qū)動(dòng)。非對(duì)稱液壓缸作為裝載機(jī)的執(zhí)行機(jī)構(gòu),其本身的特性以及其控制性能將對(duì)裝載機(jī)的性能產(chǎn)生直接的影響。所以本文首先建立了比例方向閥和閥控缸的模型,利用Simulink對(duì)液壓系統(tǒng)數(shù)學(xué)模型進(jìn)行分析和仿真,根據(jù)仿真結(jié)果分析液壓系統(tǒng)的靜態(tài)特性和動(dòng)態(tài)特性。液壓系統(tǒng)還包括比例減壓閥,它是工作裝置液壓系統(tǒng)和電氣控制系統(tǒng)的中間橋梁,也是電液比例控制系統(tǒng)的核心。首先對(duì)減壓閥液壓性能進(jìn)行分析,建立了比例減壓閥的數(shù)學(xué)模型,然后利用Simulink分析比例減壓閥的動(dòng)態(tài)特性。 工作裝置的電氣控制部分主要控制比例減壓閥和兩組換向閥,實(shí)現(xiàn)對(duì)鏟斗和動(dòng)臂的控制。為了能達(dá)到精確的控制,本文分析了幾種不同的控制方法,比較它們的控制效果,然后選擇最優(yōu)控制方法。首先對(duì)比例減壓閥的控制電流信號(hào)的時(shí)域和頻域進(jìn)行分析,研究控制信號(hào)的控制特征,為控制方法的設(shè)計(jì)奠定基礎(chǔ)。然后根據(jù)信號(hào)分析,對(duì)開(kāi)環(huán)控制系統(tǒng)、模擬PID控制以及軟件PID控制三種控制方法進(jìn)行了分析和設(shè)計(jì)。開(kāi)環(huán)控制系統(tǒng)中包括開(kāi)環(huán)系統(tǒng)的硬件設(shè)計(jì)和性能分析,主要是對(duì)開(kāi)環(huán)系統(tǒng)的抗干擾能力以及對(duì)液壓系統(tǒng)的影響進(jìn)行了分析。模擬PID控制利用比例電流作為反饋構(gòu)成一個(gè)閉環(huán)系統(tǒng),利用三角發(fā)生器和PID輸出電壓進(jìn)行比較產(chǎn)生PWM對(duì)比例閥進(jìn)行控制。這部分包括整個(gè)控制系統(tǒng)硬件設(shè)計(jì),使用PSPICE進(jìn)行硬件仿真,利用仿真結(jié)果對(duì)各部分的控制過(guò)程進(jìn)行分析。軟件PID控制主要是利用STM32F103單片機(jī)和uC/OS-II實(shí)現(xiàn)PID代替硬件實(shí)現(xiàn)控制,充分利用微控制集成的PWM功能來(lái)簡(jiǎn)化控制系統(tǒng),并通過(guò)對(duì)PID優(yōu)化來(lái)提高控制系統(tǒng)的穩(wěn)定性。 最后對(duì)三種控制方法進(jìn)行了試驗(yàn),測(cè)試了電氣系統(tǒng)和液壓系統(tǒng)的控制性能和動(dòng)態(tài)響應(yīng),并觀察控制系統(tǒng)的節(jié)約響應(yīng)和抗干擾能力。通過(guò)試驗(yàn)對(duì)比,觀察三種控制方法各自的優(yōu)缺點(diǎn)。
[Abstract]:With the development of mechatronics technology, electro hydraulic proportional technology has been rapidly developed and popularized. On the control system of engineering vehicles, the electro-hydraulic proportional technology is widely used. As a most commonly used engineering vehicle, the loader is very important to improve the performance of its control system and simplify the operation process. And urgent. Especially for the bad working environment, the use of electro-hydraulic proportional technology instead of simply relying on hydraulic operation has a great advantage. This can not only reduce the labor intensity, but also increase the precision of operation, and bring about the increase of production efficiency.
The pilot handle is affected by spring force, hydraulic power, friction and other factors during the reversing process, and increases with the increase of the power and flow of the loader. This will not only increase the operating force, the operator is easy to fatigue, but also the pilot control pressure and the pilot handle of the main valve of the loader when the control pressure range of the pilot handle is certain. It can not be completely matched. This will make the pilot handle can not accurately control the flow of the main valve core, even cause the sudden increase or decrease of the flow rate, and then cause the sudden impact of the bucket or arm, causing great damage to the whole mechanical performance. This paper uses electronic technology to control the leading pressure of the main valve core, and the sensing technology and pulse width. The integrated application of modulation technology realizes the precise control of the electro-hydraulic proportional valve. This paper focuses on the discussion and research of the hydraulic control system and the electric control system of the loader.
The hydraulic system of the loader working device is mainly composed of bucket and arm, and the bucket and arm are driven by two groups of asymmetrical hydraulic cylinders. As the actuator of the loader, asymmetric hydraulic cylinder itself and its control performance will have a direct effect on the performance of the loader. The model of cylinder control is used to analyze and simulate the mathematical model of hydraulic system by Simulink. According to the simulation results, the static and dynamic characteristics of the hydraulic system are analyzed. The hydraulic system also includes the proportional pressure relief valve. It is the middle bridge of the hydraulic system and the electrical control system of the working device, and it is the core of the electro-hydraulic proportional control system. Analysis of hydraulic valve performance, establishes a mathematical model of proportional valve, dynamic characteristic analysis and then use Simulink proportional valve.
The electrical control part of the working device mainly controls the proportional pressure relief valve and two sets of reversing valves to control the bucket and the moving arm. In order to achieve accurate control, this paper analyzes several different control methods, compares their control effects, and then selects the optimal control method. First, the control of the proportional pressure relief valve is when the current signal is controlled. In the domain and frequency domain, the control characteristics of the control signal are studied, and the basis for the design of the control method is laid. Then, according to the signal analysis, the open loop control system, the analog PID control and the software PID control are analyzed and designed. The hardware design and performance analysis of the open loop control system are included in the open loop control system. The anti interference ability of the open loop system and the influence on the hydraulic system are analyzed. The analog PID control uses the proportional current as feedback to form a closed loop system, and makes use of the triangle generator and the PID output voltage to produce the PWM contrast valve control. This part includes the hardware design of the whole control system and the use of PSPICE into the system. The control process of each part is analyzed by the simulation results. The software PID control mainly uses the STM32F103 MCU and the uC/OS-II to realize the control of the hardware instead of the hardware, and makes full use of the PWM function of the micro control integration to simplify the control system, and improves the stability of the control system through the optimization of the PID.
Finally, the three control methods were tested, the control performance and dynamic response of the electrical and hydraulic systems were tested, and the saving response and anti-interference ability of the control system were observed. The advantages and disadvantages of the three kinds of control methods were observed and compared.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類(lèi)號(hào)】:TH243
【引證文獻(xiàn)】
相關(guān)碩士學(xué)位論文 前1條
1 周震東;落地銑鏜加工中心主軸滑枕組件誤差補(bǔ)償技術(shù)研究[D];蘇州大學(xué);2013年
,本文編號(hào):2044613
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2044613.html
最近更新
教材專著