基于雙平面研磨方式的圓柱零件運(yùn)動(dòng)分析及工藝優(yōu)化研究
本文選題:圓柱零件 + 雙平面研磨 ; 參考:《浙江工業(yè)大學(xué)》2012年碩士論文
【摘要】:高精度、高一致性圓柱滾子(圓柱零件)是高精度軸承的關(guān)鍵基礎(chǔ)元件,廣泛應(yīng)用于精密軸承、能源機(jī)械、國防尖端裝備中。目前,圓柱零件普遍采用無心磨削加工,然而傳統(tǒng)加工方法難以獲得較高的精度和一致性,這使得圓柱零件在高端領(lǐng)域的應(yīng)用受到了限制。為解決傳統(tǒng)加工方法的缺陷,本文提出了一種雙平面研磨加工方法。通過控制圓柱零件的自轉(zhuǎn),利用誤差勻化的原理保證了各圓柱面的切削等概率性,在保證加工效率的同時(shí)實(shí)現(xiàn)了圓柱零件高精度和高一致性的加工。研磨軌跡線對研磨均勻性有重要意義,本文通過研究圓柱零件、研磨盤與行星輪的運(yùn)動(dòng)關(guān)系,采用矩陣圖形變換法建立了基于雙平面研磨方式的圓柱零件的運(yùn)動(dòng)學(xué)方程。采用MATLAB對建立的運(yùn)動(dòng)方程進(jìn)行仿真,分析各研磨軌跡線的均勻性和軌跡密度的分布狀況,確定轉(zhuǎn)速wp=40-65rpm、傳動(dòng)比m-1,-0.3m0.3,0.3m1,-1m-0.3、研磨半徑Rp=100-140mm等工藝參數(shù)范圍內(nèi)研磨軌跡線均勻且密集。采用ADAMS建立研磨運(yùn)動(dòng)學(xué)模型,仿真圓柱零件表面研磨軌跡,進(jìn)一步分析在上述參數(shù)范圍內(nèi)精確的參數(shù)組合。采用ADAMS仿真直接繪出軌跡曲線和MATLAB對從ADAMS導(dǎo)出的坐標(biāo)、速度數(shù)據(jù)進(jìn)行精確數(shù)值分析相結(jié)合的方法,以研磨軌跡均勻性為目標(biāo)獨(dú)創(chuàng)性的建立了圓柱零件表面研磨均勻性的評價(jià)方法,利用此方法確定了轉(zhuǎn)速wp=45、60rpm,傳動(dòng)比m=-5、-0.5、5,研磨半徑Rp=125mm、加載壓力F=1-3N為較優(yōu)的工藝參數(shù)組合;谏鲜龅姆治鼋Y(jié)果,進(jìn)行實(shí)驗(yàn)驗(yàn)證,并對研磨工藝參數(shù)進(jìn)行評價(jià)及再優(yōu)化,實(shí)驗(yàn)分析發(fā)現(xiàn)傳動(dòng)比、磨料粗細(xì)、磨盤轉(zhuǎn)速等工藝參數(shù)對圓柱零件的精密加工有關(guān)鍵影響,通過影響因素實(shí)驗(yàn)分析和正交實(shí)驗(yàn)分析得出傳動(dòng)比在m=-5、轉(zhuǎn)速在45rpm、加載壓力F=1.5N/工件、磨粒在4000#以及磨粒濃度在25%時(shí),研磨軌跡線比較密集均勻,可使得圓度、直線度及平行度均在1um以下的目標(biāo),也是本文優(yōu)化后最佳的工藝參數(shù)組合。
[Abstract]:High precision, high consistency cylindrical roller (cylindrical parts) is the key element of high precision bearing, widely used in precision bearings, energy machinery, national defense sophisticated equipment. At present, cylindrical parts are generally processed by centerless grinding. However, the traditional machining methods are difficult to obtain high accuracy and consistency, which limits the application of cylindrical parts in the high-end field. In order to solve the defects of traditional machining methods, a double-plane grinding method is proposed in this paper. By controlling the rotation of cylindrical parts, the principle of error homogenization is used to ensure the equal probability of cutting each cylindrical surface, and the machining efficiency is guaranteed, and the machining of cylindrical parts with high accuracy and consistency is realized at the same time. The grinding trajectory is of great significance to the uniformity of grinding. In this paper, the kinematics equations of cylindrical parts based on double plane grinding are established by studying the kinematic relationship between cylindrical parts, grinding disks and planetary wheels. The equation of motion was simulated by MATLAB, and the uniformity and distribution of track density of each grinding track line were analyzed. It was determined that the rotation speed was 40 ~ 65rpm, the transmission ratio was m ~ (-1) ~ (-3) m ~ (0.3) ~ (0.3) m ~ (-1) ~ (-1) m ~ (-3), the grinding radius was 100 ~ (-140 mm) mm, and the grinding track line was uniform and dense. The kinematics model of grinding is established by Adams, and the grinding track of cylindrical parts is simulated, and the precise parameter combination in the range of above parameters is further analyzed. By using Adams simulation to draw the trajectory curve directly and MATLAB to carry out accurate numerical analysis of coordinate and velocity data derived from Adams, the method of combining the accurate numerical analysis of the coordinate and velocity data derived from Adams is presented. The evaluation method of surface grinding uniformity of cylindrical parts is established with the aim of the uniformity of grinding track as the object. By using this method, the optimum process parameters such as rotating speed wpf45rpm, transmission ratio m5- 5- 0.5mm, grinding radius Rp1 125mm and loading pressure F1-3N are determined as the better process parameters. Based on the above analysis results, the experimental results are verified, and the grinding process parameters are evaluated and optimized. The experimental results show that the transmission ratio, the abrasive thickness, the rotating speed of the grinding disc and other technological parameters have a key effect on the precision machining of cylindrical parts. By means of experimental analysis and orthogonal experiment, it is found that the grinding trajectory is dense and uniform when the transmission ratio is at mU -5, the rotational speed is at 45rpm, the pressure is F _ (1.5) N / workpiece, the abrasive particle is at 4000# and the abrasive particle concentration is 25%, which can make the degree of roundness. The straightness and parallelism are all below 1um, which is the best process parameter combination after optimization in this paper.
【學(xué)位授予單位】:浙江工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH133.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱訓(xùn)生;薛秉源;;九種計(jì)算圓柱度的近似方法及其較比[J];現(xiàn)代機(jī)械;1990年02期
2 孟祥成,王俊偉,張威;內(nèi)孔圓柱度的電子測量[J];機(jī)械工人.冷加工;2004年05期
3 XZ田忠夫;姜鳳鶴;;圓柱度的新測量法[J];國外計(jì)量;1981年03期
4 韓渭鑫;;薄壁氣缸套磨削后圓柱度的超差及其預(yù)防[J];機(jī)械工藝師;1985年03期
5 雷繼輝;關(guān)福州;;高精度圓柱角尺的加工工藝改進(jìn)[J];金屬加工(冷加工);2014年02期
6 顧開顏;;一種提高圓柱度的外圓磨削新技術(shù)[J];磨床與磨削;1991年04期
7 慕道增;李文祥;;珩磨頭行程調(diào)整對被加工孔圓柱度的影響[J];機(jī)械工程師;2012年03期
8 朱玉永,武萬紅;與《圓柱度智能檢測系統(tǒng)》一文商榷[J];計(jì)量技術(shù);1995年07期
9 宋淑娥;施志輝;;軸箱體內(nèi)孔加工圓柱度超差分析及夾緊力計(jì)算[J];組合機(jī)床與自動(dòng)化加工技術(shù);2008年04期
10 杜紹先;;怎樣預(yù)防珩孔時(shí)圓度及圓柱度超差[J];機(jī)械工人.冷加工;2006年07期
相關(guān)會(huì)議論文 前1條
1 劉巖;左春檉;丁光正;栗利剛;文偉力;;大型圓柱工件非接觸測量方法研究[A];第八屆中國軋機(jī)油膜軸承技術(shù)研討會(huì)論文集[C];2006年
相關(guān)重要報(bào)紙文章 前1條
1 白陽;以微米為尺度的珩研高手[N];中國航空報(bào);2003年
相關(guān)碩士學(xué)位論文 前1條
1 任玉剛;基于雙平面研磨方式的圓柱零件運(yùn)動(dòng)分析及工藝優(yōu)化研究[D];浙江工業(yè)大學(xué);2012年
,本文編號(hào):2032592
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2032592.html