薄壁管內(nèi)推彎曲成形的液壓系統(tǒng)設(shè)計
本文選題:彎管 + 液壓伺服; 參考:《東北大學(xué)》2012年碩士論文
【摘要】:隨著工業(yè)生產(chǎn)和科學(xué)技術(shù)的不斷發(fā)展,管材的彎曲加工在金屬結(jié)構(gòu)、工程機(jī)械、石油化工、動力機(jī)械以及鍋爐、輕工、航空航天、管道工程等工業(yè)部門,占有著越來越重要的地位,也對管材的加工技術(shù)提出了更高、更新的要求。這就使得對管材成形質(zhì)量缺陷的控制和發(fā)展更先進(jìn)的管材彎曲成形技術(shù)成為迫切需要解決的難題。 另外隨著電液比例控制技術(shù)的發(fā)展,電液比例控制技術(shù)已在液壓控制中占有重要地位。同時,隨著比例元器件的發(fā)展和計算機(jī)技術(shù)的廣泛應(yīng)用,比例閥的性能不斷得到提高,比例閥在很多方面性能已與伺服閥相當(dāng)。電液比例控制系統(tǒng)是基于比例控制技術(shù)上的液壓控制系統(tǒng)。日前,一方面該類系統(tǒng)在理論上的分析及研究已有一定的基礎(chǔ),另一方面,由于控制機(jī)理上的復(fù)雜性,該類系統(tǒng)的理論還不夠深入和全面。在工程應(yīng)用中:如何把理論分析與工程實踐系統(tǒng)地、有機(jī)地結(jié)合起來,保證系統(tǒng)達(dá)到有關(guān)技術(shù)要求,是一個意義深遠(yuǎn)的課題。 本論文針對薄壁管的彎曲介紹了常用的彎曲加工方法和彎管設(shè)備,分析了國內(nèi)外數(shù)控彎管機(jī)的現(xiàn)狀及發(fā)展趨勢;并探討了數(shù)控彎管機(jī)中電液伺服系統(tǒng)的控制理論。通過對彎管工藝的分析,本文在研究彎管機(jī)工作原理和控制系統(tǒng)的基礎(chǔ)上,研究設(shè)計了彎管系統(tǒng)的液壓系統(tǒng)。對系統(tǒng)進(jìn)行了數(shù)學(xué)建模并分析關(guān)鍵部位的運動狀態(tài),進(jìn)行了matlab仿真。對系統(tǒng)采用閉環(huán)控制,利用PID控制使系統(tǒng)更加穩(wěn)定快速。 本論文對管材數(shù)控彎曲成形機(jī)理進(jìn)行了較深入的研究,為實現(xiàn)薄壁管數(shù)控彎曲成形提供了有價值的參考,對大直徑薄壁管材數(shù)控彎曲成形質(zhì)量和成形效率的提高,以及數(shù)控彎管技術(shù)的發(fā)展,具有重要的理論和實際意義。
[Abstract]:With the continuous development of industrial production and science and technology, pipe bending processing in metal structure, construction machinery, petrochemical, power machinery and boiler, light industry, aerospace, pipeline engineering and other industrial sectors, More and more important position, also put forward the higher and newer request to the pipe processing technology. This makes the control of tube forming quality defects and the development of more advanced pipe bending forming technology become an urgent problem to be solved. In addition, with the development of electro-hydraulic proportional control technology, electro-hydraulic proportional control technology has played an important role in hydraulic control. At the same time, with the development of proportional components and the wide application of computer technology, the performance of proportional valve has been continuously improved, and the performance of proportional valve has been comparable to that of servo valve in many aspects. The electro-hydraulic proportional control system is a hydraulic control system based on proportional control technology. A few days ago, on the one hand, the theoretical analysis and research of this kind of system has been based on a certain degree, on the other hand, because of the complexity of the control mechanism, the theory of this kind of system is not deep and comprehensive enough. In engineering application, how to combine theory analysis with engineering practice systematically and organically to ensure that the system can meet the relevant technical requirements is a far-reaching subject. This paper introduces the common bending machining methods and pipe bending equipment for thin wall tube bending, analyzes the present situation and development trend of numerical control pipe bending machine at home and abroad, and discusses the control theory of electro-hydraulic servo system in numerical control pipe bending machine. Based on the analysis of the pipe bending technology, the hydraulic system of the pipe bending system is designed on the basis of studying the working principle and control system of the pipe bending machine. The mathematical model of the system and the motion state of the key position are analyzed, and the matlab simulation is carried out. Closed-loop control is used for the system and pid control is used to make the system more stable and fast. In this paper, the numerical control bending forming mechanism of tube is deeply studied, which provides a valuable reference for the realization of numerical control bending forming of thin-walled tube, and improves the quality and efficiency of numerical control bending forming of large diameter thin-walled tube. And the development of NC pipe bending technology has important theoretical and practical significance.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH137
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 金國明;彎管芯棒的選取和使用[J];鍛壓技術(shù);1999年02期
2 邵作之;自動中頻彎管機(jī)床及工藝[J];鍛壓機(jī)械;1998年05期
3 林碧華,韓璞,趙艷;復(fù)合模糊控制器適應(yīng)性研究[J];華北電力大學(xué)學(xué)報;2001年02期
4 王慶豐,韓波,,路甬祥;比例節(jié)流控制的流量數(shù)字壓力補(bǔ)償(特性校正)研究[J];機(jī)床與液壓;1995年04期
5 王光祥,楊合,李恒,詹梅,谷瑞杰;工藝參數(shù)對薄壁數(shù)控彎管成形質(zhì)量影響的實驗研究[J];機(jī)械科學(xué)與技術(shù);2005年08期
6 李震,陳以,韓元杰;Fuzzy-PID控制器的分析與改進(jìn)[J];計算機(jī)與現(xiàn)代化;2004年08期
7 吳宏鑫,沈少萍;PID控制的應(yīng)用與理論依據(jù)[J];控制工程;2003年01期
8 李寧,張乃堯;典型模糊控制器的解析表達(dá)式及其系統(tǒng)化設(shè)計方法[J];控制與決策;2000年01期
9 王亞剛,邵惠鶴;基于幅值裕度和相位裕度的自整定PID控制器[J];控制與決策;2000年05期
10 黃春峰;彎曲彈性回彈及其工藝技術(shù)控制方法[J];模具技術(shù);1998年06期
本文編號:2030877
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2030877.html