GSB-11高速離心泵轉(zhuǎn)子系統(tǒng)各轉(zhuǎn)軸臨界轉(zhuǎn)速的計算
本文選題:高速離心泵 + 臨界轉(zhuǎn)速; 參考:《南京林業(yè)大學(xué)》2012年碩士論文
【摘要】:高速離心泵是一種基于新理論研發(fā)成功的用于輸送小流量、高揚程介質(zhì)的新型離心泵,與普通離心泵相比具有結(jié)構(gòu)緊湊、泵零件的通用性強、工作可靠、軸向力小、壽命長、揚程曲線平坦等特點,廣泛應(yīng)用于石油化工、航空航天、制藥、建筑消防等領(lǐng)域。為了保證高速泵轉(zhuǎn)子系統(tǒng)的平穩(wěn)運轉(zhuǎn),避免其工作轉(zhuǎn)速靠近臨界轉(zhuǎn)速產(chǎn)生共振而影響泵的壽命,在高速離心泵設(shè)計時需要準(zhǔn)確計算轉(zhuǎn)子系統(tǒng)各轉(zhuǎn)軸的臨界轉(zhuǎn)速。計算轉(zhuǎn)子系統(tǒng)的臨界轉(zhuǎn)速常用的方法是有限元法和傳遞矩陣法。 本文首先介紹了臨界轉(zhuǎn)速的概念、渦動理論、受重力影響下的臨界轉(zhuǎn)速計算原理;推導(dǎo)了轉(zhuǎn)子動力學(xué)經(jīng)典動力模型Jeffcott轉(zhuǎn)子的動力特性、運動微分方程;其次,分別用材料力學(xué)公式和Ansys軟件計算了簡支梁的剛度,并進行比較,誤差在2%以內(nèi),證明了Ansys軟件在針對梁單元模型計算時的準(zhǔn)確性,為下一步計算GSB-11高速離心泵轉(zhuǎn)子系統(tǒng)中各轉(zhuǎn)軸的臨界轉(zhuǎn)速提供了保證。 GSB-11高速離心泵齒輪軸承系統(tǒng)是受臨界轉(zhuǎn)速影響最大的部件之一,在計算其臨界轉(zhuǎn)速前,必須先對模型進行簡化,本文使用Ansys軟件對GSB-11高速泵轉(zhuǎn)子系統(tǒng)分別建立齒輪、軸承、各轉(zhuǎn)軸的力學(xué)模型,對中間軸進行模態(tài)分析,計算其一階、二階、三階固有頻率,然后根據(jù)理論公式計算固有頻率,并使用隨機振動法測量中間軸轉(zhuǎn)子系統(tǒng)的固有頻率,以比較誤差的大小。最后,使用Ansys軟件對無阻尼偏置圓盤轉(zhuǎn)子、中間軸轉(zhuǎn)子系統(tǒng)及高速軸轉(zhuǎn)子系統(tǒng)進行了轉(zhuǎn)子動力學(xué)計算,畫出高速軸的坎貝爾圖,,解得高速軸的臨界轉(zhuǎn)速。 由于系統(tǒng)的復(fù)雜性、模型不同的簡化過程、邊界條件的選取等等,采用Ansys軟件計算和實驗測試的臨界轉(zhuǎn)速都可能會有一定誤差,但通過綜合Ansys軟件計算和實驗獲得的結(jié)果,可以預(yù)判轉(zhuǎn)子系統(tǒng)發(fā)生共振的轉(zhuǎn)速范圍,避免工作速度出現(xiàn)在臨界轉(zhuǎn)速附近,將有效降低設(shè)計成本,具有一定的工程實際應(yīng)用價值。
[Abstract]:High speed centrifugal pump is a new type of centrifugal pump which is successfully developed based on the new theory for conveying small flow rate and high lift medium. Compared with ordinary centrifugal pump, it has compact structure, strong generality of pump parts, reliable work, small axial force and long life. Flat lift curve, widely used in petrochemical, aerospace, pharmaceutical, building fire and other fields. In order to ensure the smooth operation of the high speed pump rotor system and avoid the resonance between the working speed and the critical speed, it is necessary to accurately calculate the critical speed of the rotor shaft in the design of the high speed centrifugal pump. Finite element method and transfer matrix method are commonly used to calculate the critical speed of rotor system. In this paper, the concept of critical speed, the theory of vortex, the calculation principle of critical speed under the influence of gravity, the dynamic characteristics and differential equations of Jeffcott rotor, a classical dynamic model of rotor dynamics, are first introduced in this paper. The stiffness of simply supported beam is calculated by material mechanics formula and Ansys software, and the error is less than 2%. The accuracy of Ansys software in calculating beam element model is proved. It provides a guarantee for calculating the critical rotational speed of each shaft in the rotor system of GSB-11 high speed centrifugal pump. The gear bearing system of GSB-11 high-speed centrifugal pump is one of the parts most affected by the critical speed. The model must be simplified first. In this paper, the mechanical models of gear, bearing and rotating shaft are established by using Ansys software to calculate the first, second and third natural frequencies of the intermediate shaft. Then the natural frequency is calculated according to the theoretical formula and the natural frequency of the intermediate shaft rotor system is measured by random vibration method to compare the magnitude of the error. Finally, the rotor dynamics of the undamped offset disk rotor, the intermediate shaft rotor system and the high-speed shaft rotor system are calculated by using Ansys software. The Campbell diagram of the high-speed shaft is drawn and the critical speed of the high-speed shaft is obtained. Because of the complexity of the system, the simplification process of different models, the selection of boundary conditions and so on, there may be some errors in the calculation of critical rotational speed by using Ansys software and the experimental test, but the results obtained by synthesizing the calculation of Ansys software and the experimental results, The range of rotor system resonance speed can be forecasted and the working speed can be avoided near the critical speed which will effectively reduce the design cost and have certain practical application value.
【學(xué)位授予單位】:南京林業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH311
【參考文獻】
相關(guān)期刊論文 前10條
1 吳開榮,孔繁余,陳剛;共軸式部分流磁力泵的研制[J];流體機械;2004年09期
2 吳玉珍;部分流式切線泵在高效率條件下?lián)P程系數(shù)的確定[J];化工設(shè)備與管道;2000年03期
3 陳予恕,孟泉;非線性轉(zhuǎn)子-軸承系統(tǒng)的分叉[J];振動工程學(xué)報;1996年03期
4 陳黨民,李新宏,黃淑娟;部分流泵整機非定常流動數(shù)值模擬[J];工程熱物理學(xué)報;2005年S1期
5 孟志強,徐華,朱均;基于Poincare變換的滑動軸承非線性油膜力數(shù)據(jù)庫方法[J];摩擦學(xué)學(xué)報;2001年03期
6 孔繁余,陳世亮,蔣青,操松林,王頤合;常轉(zhuǎn)速部分流泵的研制[J];水泵技術(shù);2003年01期
7 李新宏,黃淑娟;切線泵整機多相位定常流動數(shù)值模擬[J];工程熱物理學(xué)報;2003年04期
8 范宗霖,王革田;切線泵的試驗研究[J];水泵技術(shù);2002年01期
9 林洪義,李雯林,林德生,林慧超;部分流泵的優(yōu)化設(shè)計[J];水泵技術(shù);2004年05期
10 李新宏,黃淑娟;切線泵流動特征的整流場數(shù)值模擬[J];農(nóng)業(yè)機械學(xué)報;2004年01期
相關(guān)碩士學(xué)位論文 前1條
1 尚志勇;轉(zhuǎn)子—軸承系統(tǒng)的非線性動力學(xué)分析[D];哈爾濱工業(yè)大學(xué);2006年
本文編號:2026694
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2026694.html