基于環(huán)面葉柵的靜葉clocking效應(yīng)的研究
本文選題:軸流壓氣機(jī) + 非定常作用 ; 參考:《上海交通大學(xué)》2012年碩士論文
【摘要】:葉輪機(jī)械內(nèi)部流動(dòng)是典型的強(qiáng)三維非定常流動(dòng),對(duì)這種流動(dòng)的深入理解和研究對(duì)提高葉輪機(jī)械氣動(dòng)性能及工作可靠性有非常重要的意義。國(guó)內(nèi)外大量的實(shí)驗(yàn)及數(shù)值分析發(fā)現(xiàn)時(shí)序效應(yīng)可以帶來(lái)氣動(dòng)效率的提高,但由于實(shí)驗(yàn)測(cè)量在高速旋轉(zhuǎn)的葉輪機(jī)械內(nèi)部測(cè)量的局限性,所以大多數(shù)情形都是通過(guò)數(shù)值分析來(lái)研究葉輪機(jī)械內(nèi)部時(shí)序效應(yīng)機(jī)理。過(guò)去的數(shù)值分析往往采用對(duì)流道進(jìn)行約化的處理手法來(lái)研究時(shí)序效應(yīng),而時(shí)序效應(yīng)作為一種由于上游葉片周向分布不均導(dǎo)致對(duì)下游的差異化影響,這樣的處理往往難以讓人信服。所以本文采用了一種全周向環(huán)面葉柵計(jì)算方法來(lái)研究時(shí)序效應(yīng)。 本文是以商業(yè)的CFD數(shù)值模擬為工具,針對(duì)試驗(yàn)用壓氣機(jī)及軸流透平模型,提出環(huán)面葉柵網(wǎng)格計(jì)算來(lái)研究軸流葉輪機(jī)械的時(shí)序效應(yīng):在50%葉高位置進(jìn)行網(wǎng)格劃分,并選取了一個(gè)2級(jí)(靜/轉(zhuǎn)/靜/轉(zhuǎn))軸流實(shí)驗(yàn)用壓氣機(jī)進(jìn)行了二維葉柵、三維單通道以及全流道環(huán)面葉柵非定常數(shù)值模擬,并就三者的計(jì)算結(jié)果進(jìn)行的比較分析,發(fā)現(xiàn)全流道環(huán)面葉柵計(jì)算具有流場(chǎng)信息全優(yōu)點(diǎn)。 為了進(jìn)一步了解軸向間距的改變對(duì)機(jī)器性能的影響,本文針對(duì)軸流壓氣機(jī)這一模型,通過(guò)改變第一級(jí)動(dòng)葉在靜葉間的軸向相對(duì)位置,來(lái)研究動(dòng)葉相對(duì)軸向位置變化對(duì)時(shí)序效應(yīng)的影響。同時(shí)針對(duì)一個(gè)Hannover大學(xué)多級(jí)透平中的2.5級(jí)(靜/轉(zhuǎn)/靜/轉(zhuǎn)/靜)軸流透平,通過(guò)環(huán)面葉柵計(jì)算方法進(jìn)行了流場(chǎng)計(jì)算,分析了clocking效應(yīng)對(duì)2.5級(jí)軸流透平氣動(dòng)性能的影響。通過(guò)本文數(shù)值計(jì)算結(jié)果分析靜葉在不同的時(shí)序位置下,附面層所受的不同擾動(dòng)以及下游靜葉壁面處附面層的影響情況,總結(jié)出時(shí)序效應(yīng)的一些基本規(guī)律:(一)后排靜葉受到上游來(lái)流尾跡的周向不均勻影響是產(chǎn)生時(shí)序效應(yīng)的主要原因,動(dòng)靜交界處周期性變化的壓力場(chǎng)所產(chǎn)生的勢(shì)擾動(dòng)的對(duì)下游葉片附面層的發(fā)展有顯著影響。時(shí)序位置的改變,會(huì)使擾動(dòng)產(chǎn)生有益迭加,從而減小了動(dòng)葉表面的流動(dòng)損失,從而實(shí)現(xiàn)氣動(dòng)效率的提高。(二)通過(guò)全通道環(huán)面葉柵計(jì)算結(jié)果證實(shí)了時(shí)序效應(yīng)的前緣干涉理論:當(dāng)上游靜葉的尾跡沖擊到葉片前緣,由于是低能流體的尾跡與同為低能流體的邊界層發(fā)生摻混,其摻混損失小,對(duì)應(yīng)氣動(dòng)效率就高,反之與主流高能流體的摻混損失大,氣動(dòng)效率低。 關(guān)于環(huán)面葉柵網(wǎng)格計(jì)算這一方法,適用于周向分布不均的時(shí)序效應(yīng)研究,并且不需要對(duì)葉片數(shù)目進(jìn)行約化處理就能對(duì)所有流道進(jìn)行非定常分析。這為使用較少的計(jì)算時(shí)間研究多級(jí)葉排連算成為可能,其非定常計(jì)算結(jié)果由于引入了多葉柵通道的計(jì)算,在各葉柵通道流場(chǎng)細(xì)節(jié)捕捉及反映各流道相互影響及壓力波動(dòng)上比單通道計(jì)算結(jié)果反映更加周全,結(jié)果可信度高,有一定的工程實(shí)用價(jià)值。
[Abstract]:The internal flow of impeller is a typical strong three-dimensional unsteady flow. It is very important to understand and study the flow in depth to improve the aerodynamic performance and reliability of impeller machinery. A large number of experiments and numerical analysis at home and abroad have found that the timing effect can bring about the increase of aerodynamic efficiency, but due to the limitation of the experimental measurement in the internal measurement of high-speed rotating impeller machinery. So in most cases, the mechanism of internal timing effect of impeller machinery is studied by numerical analysis. In the past numerical analysis often used the method of reducing the flow channel to study the timing effect. As a result of the uneven distribution of upstream blades the timing effect caused by the downstream differential effect. Such treatment is often unconvincing. In this paper, an all-circumferential annular cascade method is used to study the temporal effect. In this paper, the commercial CFD numerical simulation is used as a tool, aiming at the experimental compressor and axial turbine model, the annular cascade grid calculation is proposed to study the sequential effect of axial flow impeller machinery: mesh division is carried out at 50% blade height. A 2-stage (static / rotating / static / rotating) axial flow experimental compressor is selected to carry out the unsteady numerical simulation of two-dimensional cascade, three-dimensional single-channel and full-channel toroidal cascade, and the results are compared and analyzed. It is found that the calculation of full flow channel annular cascade has the advantage of full flow field information. In order to further understand the influence of the change of axial spacing on the performance of the machine, this paper aims at the axial compressor model by changing the axial relative position of the first stage moving blade between the static blades. To study the influence of the relative axial position of the moving blade on the timing effect. At the same time, the flow field of a 2.5 stage (static / rotating / static) axial turbine in a multistage turbine of Hannover University is calculated by the toroidal cascade calculation method. The effect of clocking effect on the aerodynamic performance of the 2.5 stage axial turbine is analyzed. The numerical results of this paper are used to analyze the influence of the boundary layer on the boundary layer and the boundary layer at the wall of the downstream stator blade under different time series positions. Some basic laws of time series effect are summarized. The main reason for the time series effect is that the back row static blade is affected by the circumferential inhomogeneous effect of upstream flow wake. The potential disturbance produced by the periodically varying pressure site at the static and static junction has a significant effect on the development of the boundary layer of the downstream blade. The change of time sequence position will result in beneficial superposition of the disturbance, which will reduce the flow loss on the moving blade surface and achieve the increase of aerodynamic efficiency. (2) through the calculation results of the full-channel annular cascade, the leading edge interference theory of the time-series effect is confirmed: when the wake of the upstream static blade hits the vane leading edge, the wake of the low-energy fluid is mixed with the boundary layer which is the same as the low-energy fluid. Its mixing loss is small, the corresponding aerodynamic efficiency is high, on the contrary, the mixing loss with mainstream high-energy fluid is large and the aerodynamic efficiency is low. The method of grid calculation for annular cascades is suitable for the study of time-series effects with uneven circumferential distribution, and unsteady analysis of all channels can be carried out without reducing the number of blades. This makes it possible to use less computing time to study the multistage blade arrangement, and the unsteady calculation results are due to the introduction of multi-cascade channel calculation. The flow field details of each cascade channel can be captured and reflected in detail, and the pressure fluctuation of each channel is more comprehensive than that of single channel calculation, and the results are of high reliability and practical value in engineering.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH45
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊寧,戴韌,陳康民;進(jìn)口湍流對(duì)透平葉柵內(nèi)部流動(dòng)影響的數(shù)值研究[J];動(dòng)力工程;2005年03期
2 石鑓;鄧清華;李軍;豐鎮(zhèn)平;;一級(jí)半軸流式透平的非定常流動(dòng)干涉與時(shí)序效應(yīng)[J];動(dòng)力工程;2009年02期
3 王仲奇,鄭嚴(yán);葉輪機(jī)械彎扭葉片的研究現(xiàn)狀及發(fā)展趨勢(shì)[J];中國(guó)工程科學(xué);2000年06期
4 蔣洪德,朱斌,徐星仲,張冬陽(yáng),蔡虎,劉建軍,蔡睿賢;葉輪機(jī)械數(shù)值計(jì)算與設(shè)計(jì)方法進(jìn)展及其在汽輪機(jī)中的應(yīng)用──第一部分:數(shù)值計(jì)算及設(shè)計(jì)方法進(jìn)展[J];工程熱物理學(xué)報(bào);1998年03期
5 祁明旭,豐鎮(zhèn)平,KANGShun,HIRSCHCharles;動(dòng)靜干涉效應(yīng)對(duì)軸流透平級(jí)氣動(dòng)性能的影響[J];工程熱物理學(xué)報(bào);2003年01期
6 季路成,陳江,黃海波,徐建中;關(guān)于葉輪機(jī)時(shí)均(準(zhǔn)四維)和非定常(四維)氣動(dòng)設(shè)計(jì)體系的初步詮釋[J];工程熱物理學(xué)報(bào);2003年04期
7 閆朝,季路成,陳江,徐建中;軸向間距對(duì)時(shí)序效應(yīng)影響的研究[J];工程熱物理學(xué)報(bào);2004年02期
8 陳浮;顧忠華;謝海逸;王仲奇;;彎曲靜葉時(shí)序效應(yīng)對(duì)壓氣機(jī)性能的影響[J];工程熱物理學(xué)報(bào);2007年01期
9 侯安平,周盛;軸流式葉輪機(jī)時(shí)序效應(yīng)的機(jī)理探討[J];航空動(dòng)力學(xué)報(bào);2003年01期
10 劉艷明,鐘兢軍,李海濱,王松濤;不同長(zhǎng)度端壁翼刀對(duì)壓氣機(jī)葉柵二次流影響的數(shù)值研究[J];航空動(dòng)力學(xué)報(bào);2004年05期
相關(guān)博士學(xué)位論文 前1條
1 閆朝;關(guān)于應(yīng)用緣線匹配最大化時(shí)序效應(yīng)潛能的初探[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2004年
,本文編號(hào):2013559
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2013559.html