磁懸浮支承的溫度場理論分析與實驗驗證
本文選題:磁懸浮 + 磁力軸承; 參考:《武漢理工大學》2011年碩士論文
【摘要】:隨著計算機技術、自動控制技術、微電子技術的飛速發(fā)展,磁懸浮支承技術的應用越來越廣泛,尤其是磁懸浮支承典型結構磁力軸承的應用。目前在磁力軸承的研究中存在一個突出的問題,即磁力軸承在高速旋轉時,轉子會出現(xiàn)嚴重的溫升現(xiàn)象,這對轉子精度及長時間正常運轉都會產(chǎn)生影響,本文主要是針對這一問題展開的溫度場研究。 本文對溫度場的原理及各種傳熱機制做了簡要介紹,總結了目前國內(nèi)外溫度場研究的成果,分析了磁力軸承溫度場研究的原因和意義。本文通過理論計算尋求磁力軸承的溫度場邊界條件,采用有限元法對軸向磁力軸承和徑向磁力軸承的溫度分布進行了計算和分析,并分析了其溫度分布的原因。 文中對單個線圈,在其偏置電流和頻率不變的情況下,改變其控制電流的幅值,通過實驗比較,得出控制電流的幅值是影響線圈總損耗的因素之一。此外,在相同的條件下輸入正弦波、方波和三角波電壓,通過實驗得出,在同一個磁通密度幅值的情況下,方波供電產(chǎn)生的損耗最大,正弦波最小。 此外,本文對磁懸浮直線支承的典型結構即磁懸浮飛車進行了分析與實驗驗證。磁懸浮飛車是本課題組利用機械原理和磁場向心效應,以兩自由度簡化懸浮原理,以最接近單個磁力軸承的工作狀態(tài),研發(fā)出的兩自由度主動控制磁懸浮直線支承實驗裝置。本文首先利用有限元商業(yè)軟件ANSYS對其進行溫度場的模擬分析,然后用武漢華中數(shù)控股份有限公司的HY-2988G紅外熱像儀來測量磁懸浮飛車的溫度場分布,并通過對磁懸浮飛車不斷加載,改變其控制電流的方式來測量其在不同控制電流狀態(tài)下的溫度分布狀況,從而為磁懸浮飛車的進一步優(yōu)化提供理論基礎。 本文通過對實驗結果的分析,提出控制電流幅值及不同波形的電壓都會影響磁力軸承損耗,同時通過理論將磁滯損耗與渦流損耗計算進行分離,但是其實驗分離還有待進一步的研究。
[Abstract]:With the rapid development of computer technology, automatic control technology and microelectronic technology, the application of magnetic suspension support technology is more and more extensive, especially the application of magnetic bearing with typical structure. At present, there is a prominent problem in the research of magnetic bearing, that is, when the magnetic bearing rotates at high speed, the rotor will have a serious temperature rise phenomenon, which will have an impact on the rotor precision and the normal operation for a long time. In this paper, the temperature field of this problem is studied. In this paper, the principle of temperature field and various heat transfer mechanisms are briefly introduced. The research results of temperature field at home and abroad are summarized, and the reasons and significance of the research on temperature field of magnetic bearing are analyzed. In this paper, the temperature distribution of axial magnetic bearing and radial magnetic bearing is calculated and analyzed by using finite element method, and the reason of temperature distribution is analyzed. In this paper, when the bias current and frequency of a single coil are not changed, the amplitude of the control current is changed. Through experimental comparison, it is concluded that the amplitude of the control current is one of the factors affecting the total loss of the coil. In addition, under the same conditions, sinusoidal wave, square wave and triangle wave voltage are input. The experimental results show that under the same magnetic flux density amplitude, the power loss produced by square wave is the largest and the sine wave is the smallest. In addition, the typical structure of maglev linear support, maglev flying vehicle, is analyzed and verified by experiments. The maglev flying vehicle is a two-degree-of-freedom active control magnetic suspension linear support device developed by our team, which utilizes the mechanical principle and the magnetic field concentric effect, simplifies the levitation principle with two degrees of freedom, and is closest to the working state of a single magnetic bearing. In this paper, the finite element commercial software ANSYS is used to simulate and analyze the temperature field, and then the HY-2988G infrared thermal imager of Wuhan Huazhong CNC Co., Ltd. is used to measure the temperature field distribution of the maglev flying vehicle. The temperature distribution of the maglev flying vehicle under different control current states is measured by changing its control current by loading continuously, which provides a theoretical basis for the further optimization of the maglev flying vehicle. Based on the analysis of the experimental results, it is proposed that the magnetic bearing loss will be affected by the amplitude of the control current and the voltage of different waveforms. At the same time, the hysteresis loss is separated from the eddy current loss calculation by the theory. But its experimental separation still needs further research.
【學位授予單位】:武漢理工大學
【學位級別】:碩士
【學位授予年份】:2011
【分類號】:TH133.3
【參考文獻】
相關期刊論文 前10條
1 孫首群,耿海鵬,虞烈;實心磁鐵推力磁軸承熱分析[J];電工技術學報;2002年05期
2 王贊明,孟慶龍,顏威利;電器中三維溫度場計算的有限元方法[J];低壓電器;1987年04期
3 靳廷船;李偉力;陳文彪;;感應電機運行時的定子溫度場分析與計算[J];防爆電機;2006年02期
4 孫首群;朱衛(wèi)光;趙玉香;;推力磁軸承轉子系統(tǒng)溫度場[J];上海理工大學學報;2008年02期
5 葛治美,韓振興,張恩和,李國權,邢俊;航空發(fā)動機軸承腔熱分析計算[J];航空動力學報;2005年03期
6 劉志才,李志廣;紅外熱像儀圖像處理技術綜述[J];紅外技術;2000年06期
7 吳華春;胡業(yè)發(fā);;磁懸浮磨削主軸熱態(tài)特性[J];機械工程學報;2010年20期
8 李新生,楊作興,趙雷,趙鴻賓;軸向電磁軸承發(fā)熱問題研究[J];清華大學學報(自然科學版);2002年08期
9 白城均;宋方臻;邵海燕;;磁力軸承的發(fā)展及應用[J];濟南大學學報(自然科學版);2007年04期
10 丁文,周會軍,魚振民;基于ANSYS的開關磁阻電機溫度場分析[J];微電機(伺服技術);2005年05期
相關博士學位論文 前1條
1 吳剛;混合磁軸承飛輪系統(tǒng)設計與控制方法研究[D];國防科學技術大學;2006年
相關碩士學位論文 前5條
1 方民;磁懸浮轉子部件溫度場的分析與計算[D];武漢理工大學;2003年
2 黃曉明;高速電主軸熱態(tài)特性的有限元分析[D];廣東工業(yè)大學;2003年
3 楊順;磁懸浮轉子系統(tǒng)的溫度場實驗研究[D];武漢理工大學;2006年
4 楊麗;開關磁阻電機的損耗及熱分析研究[D];南京航空航天大學;2006年
5 張斌;基于ANSYS的徑向磁力軸承渦流損耗研究[D];武漢理工大學;2007年
,本文編號:2011554
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/2011554.html