漸進結(jié)構(gòu)優(yōu)化方法及其在回轉(zhuǎn)體拓?fù)鋬?yōu)化中的應(yīng)用研究
本文選題:漸進結(jié)構(gòu)優(yōu)化 + 拓?fù)鋬?yōu)化; 參考:《重慶大學(xué)》2012年碩士論文
【摘要】:科學(xué)技術(shù)的不斷發(fā)展對結(jié)構(gòu)的力學(xué)性能和經(jīng)濟性提出了越來越高的要求,,從而促進設(shè)計方法的研究和迅速發(fā)展。結(jié)構(gòu)最優(yōu)化設(shè)計正是這樣一個迅速發(fā)展的設(shè)計領(lǐng)域。結(jié)構(gòu)優(yōu)化方法使得設(shè)計人員可進行主動、創(chuàng)造性的設(shè)計,而結(jié)構(gòu)拓?fù)鋬?yōu)化則是后續(xù)的形狀、尺寸優(yōu)化設(shè)計的基礎(chǔ)。 飛輪等回轉(zhuǎn)體作為一類重要的機械零件結(jié)構(gòu)類型,其拓?fù)湫问讲粌H影響著這類物體力學(xué)性能,同時影響如飛輪轉(zhuǎn)動慣量等工作性能。本文采用漸進結(jié)構(gòu)優(yōu)化方法(ESO)對含有剛度、轉(zhuǎn)動慣量、體積要求等信息的回轉(zhuǎn)體進行拓?fù)鋬?yōu)化研究。 本文推導(dǎo)了離心力作用下的單元剛度靈敏度計算公式,并采用“硬殺”策略的雙向漸進結(jié)構(gòu)優(yōu)化方法(BESO)對二維和三維的回轉(zhuǎn)體進行優(yōu)化分析。依據(jù)多目標(biāo)優(yōu)化的乘除法策略,提出了基于靈敏度乘除法的雙向漸進結(jié)構(gòu)優(yōu)化的多目標(biāo)處理方法,成功實現(xiàn)了某汽車驅(qū)動盤和某飛輪的多目標(biāo)拓?fù)鋬?yōu)化設(shè)計。同時對該方法在特殊情形下的失效做了分析。針對剛度靈敏度和轉(zhuǎn)動慣量靈敏度不同的分布規(guī)律,提出了靈敏度再處理技術(shù),以此平衡兩種不同類型靈敏度對單元刪增的影響,并指出靈敏度再處理技術(shù)是一種特殊的過濾技術(shù)。 本文就回轉(zhuǎn)體一定轉(zhuǎn)動慣量下單元數(shù)目不可控的問題,提出了以最大剛度為優(yōu)化目標(biāo),以轉(zhuǎn)動慣量為約束下的漸進結(jié)構(gòu)優(yōu)化方法。結(jié)構(gòu)的漸進變化仍依據(jù)體積的進化率,在轉(zhuǎn)動慣量滿足約束條件時,應(yīng)盡量增大結(jié)構(gòu)體積以最大程度提高結(jié)構(gòu)剛度。進而實現(xiàn)了以最大剛度為優(yōu)化目標(biāo),體積和轉(zhuǎn)動慣量同時約束的多約束優(yōu)化問題。在結(jié)構(gòu)漸進到體積約束限且轉(zhuǎn)動慣量不滿足約束條件時,通過構(gòu)造拉格朗日函數(shù)將單元轉(zhuǎn)動慣量信息包含在單元靈敏度中,從而使轉(zhuǎn)動慣量逐步向約束范圍內(nèi)逼近。依據(jù)提出的優(yōu)化算法,實現(xiàn)了某飛輪的結(jié)構(gòu)拓?fù)鋬?yōu)化,算例表明此方法的正確性和有效性。
[Abstract]:With the development of science and technology, the mechanical properties and economy of structures are required more and more, thus promoting the research and rapid development of design methods. Structural optimization design is such a rapidly developing field of design. The structural optimization method enables designers to design actively and creatively, while structural topology optimization is the basis of subsequent shape and size optimization design. As an important structural type of mechanical parts, the topological form of flywheel iso-rotary body not only affects the mechanical properties of this kind of object, but also affects the working performance such as the moment of inertia of flywheel. In this paper, an evolutionary structural optimization method (ESO) is used to study the topology optimization of a rotary body with information such as stiffness, moment of inertia and volume requirement. In this paper, the formulas for calculating the sensitivity of element stiffness under centrifugal force are derived, and the bi-directional progressive structural optimization method of "hard kill" strategy is used to optimize the two-dimensional and three-dimensional rotary bodies. According to the strategy of multiplication and division of multi-objective optimization, a multi-objective method of bidirectional progressive structural optimization based on sensitivity multiplication and division method is proposed, and the multi-objective topology optimization design of a driving disk and a flywheel is successfully realized. At the same time, the failure of the method in special cases is analyzed. Aiming at the different distribution of stiffness sensitivity and moment of inertia sensitivity, a sensitivity reprocessing technique is proposed to balance the effects of two different types of sensitivity on element deletion. It is pointed out that sensitivity reprocessing is a special filtering technique. In this paper, for the problem that the number of elements is not controllable under a certain moment of inertia of a rotary body, a progressive structural optimization method with the maximum stiffness as the optimization objective and the moment of inertia as the constraint is proposed. The gradual change of the structure is still based on the evolution rate of the volume. When the moment of inertia satisfies the constraint condition, the volume of the structure should be increased as much as possible in order to increase the stiffness of the structure to the maximum extent. Furthermore, the multi-constraint optimization problem with the maximum stiffness as the optimization objective and the volume and moment of inertia simultaneously constrained is realized. When the structure is progressive to the volume constraint limit and the moment of inertia does not satisfy the constraint conditions, the information of the element moment of inertia is included in the element sensitivity by constructing the Lagrangian function, which makes the moment of inertia gradually approximate to the constraint range. According to the proposed optimization algorithm, the structure topology optimization of a flywheel is realized. The example shows that the method is correct and effective.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH133.7
【參考文獻】
相關(guān)期刊論文 前9條
1 程耿東;關(guān)于桁架結(jié)構(gòu)拓?fù)鋬?yōu)化中的奇異最優(yōu)解[J];大連理工大學(xué)學(xué)報;2000年04期
2 張大可;孫圣權(quán);;液壓機下橫梁結(jié)構(gòu)拓?fù)涞倪M化結(jié)構(gòu)優(yōu)化[J];重慶大學(xué)學(xué)報;2009年10期
3 榮見華,姜節(jié)勝,顏東煌,徐斌;多約束的橋梁結(jié)構(gòu)拓?fù)鋬?yōu)化[J];工程力學(xué);2002年04期
4 榮見華,唐國金,楊振興,傅建林;一種三維結(jié)構(gòu)拓?fù)鋬?yōu)化設(shè)計方法[J];固體力學(xué)學(xué)報;2005年03期
5 王述彥;變厚度回轉(zhuǎn)構(gòu)件的優(yōu)化設(shè)計[J];機械科學(xué)與技術(shù);2002年05期
6 高彤;張衛(wèi)紅;朱繼宏;湯興剛;;循環(huán)對稱結(jié)構(gòu)靜力學(xué)漸進拓?fù)鋬?yōu)化設(shè)計[J];機械工程學(xué)報;2008年03期
7 高彤;張衛(wèi)紅;朱繼宏;;慣性載荷作用下結(jié)構(gòu)拓?fù)鋬?yōu)化[J];力學(xué)學(xué)報;2009年04期
8 朱桂華;劉金波;張玉柱;;飛輪儲能系統(tǒng)研究進展、應(yīng)用現(xiàn)狀與前景[J];微特電機;2011年08期
9 亢戰(zhàn);張池;;考慮回轉(zhuǎn)性能的三維結(jié)構(gòu)拓?fù)鋬?yōu)化設(shè)計[J];應(yīng)用力學(xué)學(xué)報;2008年01期
相關(guān)博士學(xué)位論文 前2條
1 劉毅;雙向固定網(wǎng)格漸進結(jié)構(gòu)優(yōu)化方法及其工程應(yīng)用[D];清華大學(xué);2005年
2 范文杰;挖掘裝載機裝載工作裝置動力分析、動態(tài)應(yīng)力仿真研究及動臂結(jié)構(gòu)拓?fù)鋬?yōu)化[D];吉林大學(xué);2006年
本文編號:1991470
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1991470.html