斜齒輪耦合轉(zhuǎn)子系統(tǒng)動(dòng)力學(xué)特性研究
本文選題:斜齒輪 + 齒輪轉(zhuǎn)子系統(tǒng) ; 參考:《東北大學(xué)》2012年碩士論文
【摘要】:齒輪轉(zhuǎn)子系統(tǒng)是各種機(jī)器和機(jī)械設(shè)備中應(yīng)用最廣泛的動(dòng)力和運(yùn)動(dòng)傳遞裝置之一,其力學(xué)性能和工作性能對(duì)整個(gè)機(jī)器有重要影響。由于齒輪的嚙合作用,齒輪軸系的振動(dòng)特性與簡(jiǎn)單轉(zhuǎn)子系統(tǒng)有著根本的區(qū)別,突出特征為系統(tǒng)各軸間的彎扭耦合振動(dòng),對(duì)于斜齒輪還存在彎扭軸擺耦合振動(dòng)。如果不考慮耦合振動(dòng)的影響,不僅造成計(jì)算精度低,而且容易丟失一些重要信息,如模態(tài)耦合派生的新頻率,扭轉(zhuǎn)激勵(lì)激發(fā)的橫向響應(yīng)等。因此,應(yīng)從系統(tǒng)的角度對(duì)齒輪耦合轉(zhuǎn)子系統(tǒng)進(jìn)行研究。 本文以一個(gè)兩對(duì)斜齒輪耦合的三平行軸轉(zhuǎn)子系統(tǒng)為研究對(duì)象,考慮靜態(tài)傳遞誤差、齒輪幾何偏心的影響建立了全自由度通用齒輪嚙合動(dòng)力學(xué)模型,并考慮轉(zhuǎn)子系統(tǒng)的影響,建立了平行軸系齒輪轉(zhuǎn)子系統(tǒng)有限元模型。從固有特性和動(dòng)力學(xué)響應(yīng)兩方面對(duì)系統(tǒng)進(jìn)行了分析,主要內(nèi)容包括以下幾個(gè)方面: (1)本文以斜齒圓柱齒輪系統(tǒng)為研究對(duì)象,考慮齒輪靜態(tài)傳遞誤差、齒輪幾何偏心、輸入輸出轉(zhuǎn)矩等因素,建立了全自由度通用平行軸齒輪動(dòng)力學(xué)嚙合模型。 (2)考慮轉(zhuǎn)子系統(tǒng)的影響,建立了平行軸系齒輪轉(zhuǎn)子系統(tǒng)有限元模型。并對(duì)系統(tǒng)進(jìn)行彎扭軸擺耦合固有特性分析。 (3)為了判斷系統(tǒng)的各階主導(dǎo)模態(tài)、主導(dǎo)軸,更好的預(yù)測(cè)轉(zhuǎn)子系統(tǒng)結(jié)構(gòu)的失效部位、失效性質(zhì)和實(shí)現(xiàn)結(jié)構(gòu)在動(dòng)力特性上的優(yōu)化設(shè)計(jì),本文提出使用模態(tài)應(yīng)變能和模態(tài)應(yīng)變能密度定量的識(shí)別轉(zhuǎn)子系統(tǒng)主導(dǎo)模態(tài)和主導(dǎo)軸。并與定性識(shí)別的模態(tài)振型進(jìn)行對(duì)比,證明了本文提出方法的正確性。 (4)分析了多種參數(shù)對(duì)系統(tǒng)固有特性的影響。1)不同自由度下齒輪耦合;2)不同的主動(dòng)軸、主動(dòng)軸的轉(zhuǎn)向、齒輪的旋向;3)齒輪的嚙合剛度、安裝角、螺旋角、方位角等因素。 (5)基于API617標(biāo)準(zhǔn)分析了齒輪轉(zhuǎn)子系統(tǒng)在定轉(zhuǎn)速、變轉(zhuǎn)速下的不平衡響應(yīng)。結(jié)果表明在轉(zhuǎn)速范圍內(nèi),系統(tǒng)響應(yīng)沒(méi)有出現(xiàn)峰值,幅值也小于API617標(biāo)準(zhǔn),因此系統(tǒng)在此范圍內(nèi)運(yùn)行是安全可靠的。 (6)通過(guò)建立齒輪幾何偏心的系統(tǒng)動(dòng)力學(xué)方程,分析了齒輪偏心對(duì)系統(tǒng)不平衡響應(yīng)的影響。最后,分析了齒輪偏心量對(duì)系統(tǒng)響應(yīng)的影響。 (7)基于ANSYS軟件建立了齒輪的有限元嚙合模型。通過(guò)接觸分析求得多種載荷下齒輪靜態(tài)傳遞誤差。然后考慮靜態(tài)傳遞誤差,對(duì)系統(tǒng)進(jìn)行了動(dòng)力學(xué)響應(yīng)分析。最后,分析了多種載荷下齒輪傳遞誤差的系統(tǒng)動(dòng)力學(xué)響應(yīng)。 本文針對(duì)斜齒輪轉(zhuǎn)子系統(tǒng)展開動(dòng)力學(xué)特性的研究,通過(guò)大量數(shù)值計(jì)算得出動(dòng)態(tài)特性的相應(yīng)結(jié)果,為進(jìn)一步的理論研究和高性能齒輪轉(zhuǎn)子系統(tǒng)的設(shè)計(jì)提供理論基礎(chǔ)。
[Abstract]:The gear rotor system is one of the most widely used power and motion transmission devices in various machines and mechanical equipment. Its mechanical and working properties have an important influence on the whole machine. The vibration characteristic of the gear shafting is different from the root of a simple rotor system because of the Meshing Effect of the gear. If the coupling vibration is torsional coupled vibration, there is also a coupling vibration of the bending and torsion axes. If the influence of coupling vibration is not taken into consideration, the calculation accuracy is low, and some important information is easily lost, such as the new frequency derived from the modal coupling, the lateral response of the torsional excitation and so on. Therefore, the gear coupling rotor system should be carried out from the system angle. Research.
In this paper, a two pair of helical gear coupled rotor system with three parallel axes is taken as the research object. Considering the static transmission error and the influence of the gear geometric eccentricity, the full freedom general gear meshing dynamics model is established. Considering the influence of the rotor system, a finite element model of the parallel shaft gear system is established. The system is analyzed in response to two parties. The main contents are as follows:
(1) in this paper, the dynamic meshing model of a universal parallel axis gear is established, taking the helical gear system as the research object, considering the static transmission error of the gear, the gear geometric eccentricity, the input and output torque and so on.
(2) considering the influence of the rotor system, a finite element model of the parallel shaft gear rotor system is established, and the inherent characteristics of the system are analyzed.
(3) in order to judge the leading modes of each order of the system, the leading axis, better prediction of the failure parts of the rotor system structure, the failure properties and the optimal design of the structure on the dynamic characteristics, this paper proposes the identification of the dominant mode and the leading axis of the rotor system using modal strain energy and modal strain energy density. The comparison of vibration modes proves the correctness of the method proposed in this paper.
(4) analysis of the influence of various parameters on the inherent characteristics of the system.1) gear coupling under different degrees of freedom; 2) the different active axis, the steering of the active axis, the rotation of the gear; 3) the meshing stiffness, the installation angle, the helix angle, and the azimuth angle of the gear.
(5) based on the API617 standard, the unbalanced response of the gear rotor system at fixed speed and variable speed is analyzed. The results show that the response of the system does not appear to be peak and the amplitude is less than the API617 standard in the range of speed, so the system is safe and reliable in this range.
(6) by establishing the system dynamics equation of gear geometric eccentricity, the influence of gear eccentricity on the unbalanced response of the system is analyzed. Finally, the influence of gear eccentricity on the response of the system is analyzed.
(7) the finite element meshing model of gear is established based on ANSYS software. Through contact analysis, the static transmission error of gears under various loads is obtained. Then considering the static transmission error, the dynamic response of the system is analyzed. Finally, the system dynamic response of gear transmission error under various loads is analyzed.
In this paper, the dynamic characteristics of the helical gear rotor system are studied, and the corresponding results of the dynamic characteristics are obtained by a large number of numerical calculations. It provides a theoretical basis for the further theoretical research and the design of high performance gear rotor system.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH132.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱才朝;陸波;徐向陽(yáng);王海霞;;大功率船用齒輪箱傳動(dòng)系統(tǒng)和結(jié)構(gòu)系統(tǒng)耦合特性分析[J];船舶力學(xué);2011年11期
2 宋雪萍,于濤,李國(guó)平,聞邦椿;齒輪軸系彎扭耦合振動(dòng)特性[J];東北大學(xué)學(xué)報(bào);2005年10期
3 戴繼雙;馬輝;李朝峰;聞邦椿;;含增速齒輪的轉(zhuǎn)子系統(tǒng)固有特性研究[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年09期
4 王海霞;朱才朝;張磊;寧杰;劉偉輝;;大型船用齒輪箱傳動(dòng)系統(tǒng)的動(dòng)態(tài)耦合特性[J];重慶大學(xué)學(xué)報(bào);2010年01期
5 秦大同;錢恩;石萬(wàn)凱;;燃?xì)廨啓C(jī)齒輪耦合轉(zhuǎn)子系統(tǒng)的動(dòng)力學(xué)特性[J];重慶大學(xué)學(xué)報(bào);2010年01期
6 唐進(jìn)元;陳海鋒;;齒輪傳動(dòng)非線性動(dòng)力學(xué)鍵合圖建模研究[J];重慶大學(xué)學(xué)報(bào);2012年02期
7 歐衛(wèi)林,王三民,袁茹;齒輪耦合復(fù)雜轉(zhuǎn)子系統(tǒng)彎扭耦合振動(dòng)分析的軸單元法[J];航空動(dòng)力學(xué)報(bào);2005年03期
8 邵忍平,沈允文,孫進(jìn)才;齒輪減速器系統(tǒng)可變固有特性動(dòng)力學(xué)研究[J];航空學(xué)報(bào);2001年01期
9 崔亞輝;劉占生;葉建槐;陳鋒;錢大帥;王永亮;;復(fù)雜多級(jí)齒輪-轉(zhuǎn)子-軸承系統(tǒng)的動(dòng)力學(xué)建模和數(shù)值仿真[J];機(jī)械傳動(dòng);2009年06期
10 宋雪萍;劉樹英;聞邦椿;;齒輪-轉(zhuǎn)子系統(tǒng)的振動(dòng)特性分析[J];機(jī)械科學(xué)與技術(shù);2006年02期
相關(guān)博士學(xué)位論文 前1條
1 閆志勇;復(fù)雜轉(zhuǎn)子系統(tǒng)動(dòng)力學(xué)行為研究[D];復(fù)旦大學(xué);2011年
,本文編號(hào):1964396
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1964396.html