基于近似模型的機(jī)車(chē)齒輪的可靠性?xún)?yōu)化設(shè)計(jì)
本文選題:齒輪 + 非概率可靠性?xún)?yōu)化 ; 參考:《湖南大學(xué)》2012年碩士論文
【摘要】:齒輪是在各種傳動(dòng)系統(tǒng)中應(yīng)用最為廣泛的一種傳動(dòng)機(jī)構(gòu)。它依靠輪齒齒廓直接接觸來(lái)傳遞空間任意兩軸間的運(yùn)動(dòng)和力,并具有傳遞功率范圍大、傳遞效率高、傳動(dòng)比準(zhǔn)確、使用壽命長(zhǎng)、工作可靠等優(yōu)點(diǎn)。目前,我國(guó)列車(chē)的運(yùn)行速度較之以前得到大幅提高,作為動(dòng)力傳動(dòng)部件的變速齒輪,長(zhǎng)期處于高速重載的工作環(huán)境中,容易出現(xiàn)齒面膠合及點(diǎn)蝕,因此齒輪的應(yīng)力分析以及齒輪的嚙合參數(shù)的優(yōu)化是很有必要的。 本文首先基于通用有限元軟件ANSYS的參數(shù)化設(shè)計(jì)語(yǔ)言APDL建立了機(jī)車(chē)齒輪的參數(shù)化有限元模型,,然后在齒輪最大等效功率工作狀態(tài)下仿真計(jì)算輪齒的接觸應(yīng)力和齒根彎曲應(yīng)力。然后,以齒輪的嚙合參數(shù)為設(shè)計(jì)變量,可靠度作為約束,以輪齒的接觸應(yīng)力、齒根彎曲應(yīng)力及輪齒傳動(dòng)的重合度為優(yōu)化目標(biāo),采用帶有精英保持策略的非支配排序遺傳算法(NSGA-II)對(duì)齒輪進(jìn)行了優(yōu)化。 考慮到有限元模型比較復(fù)雜,為避免優(yōu)化迭代過(guò)程中調(diào)用有限元計(jì)算應(yīng)力會(huì)導(dǎo)致計(jì)算時(shí)間過(guò)長(zhǎng)的問(wèn)題,在一定仿真次數(shù)的基礎(chǔ)上建立了輪齒有限元計(jì)算的代理模型,以提高計(jì)算效率。由于輪齒的載荷在齒輪傳動(dòng)中會(huì)隨著振動(dòng)和沖擊發(fā)生變化,故將其作為一不確定因素考慮并用區(qū)間數(shù)來(lái)描述,相應(yīng)的可靠性約束采用非概率可靠性指標(biāo)算法求解。為了降低不確定性參數(shù)對(duì)輪齒應(yīng)力變化幅度的影響,采用區(qū)間分析方法對(duì)齒輪進(jìn)行了不確定多目標(biāo)優(yōu)化,并與可靠性?xún)?yōu)化進(jìn)行了比較。最后,將優(yōu)化的結(jié)果通過(guò)有限元仿真驗(yàn)證,輪齒的應(yīng)力得到了有效的降低,說(shuō)明優(yōu)化結(jié)果是有效可行的。
[Abstract]:Gear is the most widely used transmission mechanism in various transmission systems. It relies on the tooth profile to transfer the movement and force between any two axes in space. It has the advantages of large transmission power range, high transmission efficiency, accurate transmission ratio, long service life, reliable operation and so on. At present, the running speed of train in our country has been greatly improved compared with before. As a power transmission component, the variable speed gear is in the working environment of high speed and heavy load for a long time, so it is easy to appear tooth surface gluing and pitting corrosion. Therefore, it is necessary to analyze the stress of gears and optimize the meshing parameters of gears. In this paper, the parametric finite element model of locomotive gear is established based on the parameterized design language APDL of the universal finite element software ANSYS, and then the contact stress and the tooth root bending stress of the gear tooth are simulated under the working state of the gear maximum equivalent power. Then, the gear meshing parameter is taken as the design variable, the reliability is taken as the constraint, the contact stress of the gear tooth, the bending stress of the tooth root and the coincidence degree of the gear tooth transmission are taken as the optimization objectives. The non-dominant sorting genetic algorithm (NSGA-II) with elite retention strategy is used to optimize gears. Considering the complexity of the finite element model, in order to avoid the problem that the calculation time is too long when the finite element calculation stress is used in the optimization iteration process, the agent model of the gear tooth finite element calculation is established on the basis of a certain number of simulation times. In order to improve the efficiency of calculation. Because the load of gear teeth changes with vibration and shock in gear transmission, it is considered as an uncertain factor and described by interval number, and the corresponding reliability constraints are solved by non-probabilistic reliability index algorithm. In order to reduce the influence of uncertain parameters on the change of stress amplitude of gear teeth, the method of interval analysis is used to optimize the gear with uncertain multi-objective, and compared with the reliability optimization. Finally, the optimization results are verified by finite element simulation, and the stress of gear teeth is reduced effectively, which shows that the optimization results are effective and feasible.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類(lèi)號(hào)】:TH132.41;U260.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊生華;齒輪接觸有限元分析[J];計(jì)算力學(xué)學(xué)報(bào);2003年02期
2 樊成;欒茂田;黎勇;楊慶;;Kriging插值無(wú)網(wǎng)格方法及其在力學(xué)邊值問(wèn)題中的應(yīng)用[J];巖石力學(xué)與工程學(xué)報(bào);2007年01期
3 呂震宙,馮蘊(yùn)雯;結(jié)構(gòu)可靠性問(wèn)題研究的若干進(jìn)展 [J];力學(xué)進(jìn)展;2000年01期
4 程遠(yuǎn)勝,曾廣武;考慮不確定性的船舶坐墩配墩優(yōu)化[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年03期
5 王曉鋒,席光;基于Kriging模型的翼型氣動(dòng)性能優(yōu)化設(shè)計(jì)[J];航空學(xué)報(bào);2005年05期
6 易平;;對(duì)區(qū)間不確定性問(wèn)題的可靠性度量的探討[J];計(jì)算力學(xué)學(xué)報(bào);2006年02期
7 劉剛田,趙萍,楊耀山,梁桂明;弧齒錐齒輪的實(shí)體造型和有限元強(qiáng)度分析[J];礦山機(jī)械;2003年10期
8 李常義,潘存云,姚齊水,李偉建;基于ANSYS的漸開(kāi)線(xiàn)圓柱齒輪參數(shù)化幾何造型技術(shù)研究[J];機(jī)電工程;2004年09期
9 郭書(shū)祥,張陵,李穎;結(jié)構(gòu)非概率可靠性指標(biāo)的求解方法[J];計(jì)算力學(xué)學(xué)報(bào);2005年02期
10 郭書(shū)祥,呂震宙;基于非概率模型的結(jié)構(gòu)可靠性?xún)?yōu)化設(shè)計(jì)[J];計(jì)算力學(xué)學(xué)報(bào);2002年02期
相關(guān)博士學(xué)位論文 前2條
1 曹鴻鈞;基于凸集合模型的結(jié)構(gòu)和多學(xué)科系統(tǒng)不確定性分析與設(shè)計(jì)[D];西安電子科技大學(xué);2005年
2 謝延敏;基于Kriging模型和灰色關(guān)聯(lián)分析的板料成形工藝穩(wěn)健優(yōu)化設(shè)計(jì)研究[D];上海交通大學(xué);2007年
本文編號(hào):1913680
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1913680.html