高速重載齒輪傳動(dòng)系統(tǒng)穩(wěn)定性研究
本文選題:高速重載齒輪傳動(dòng)系統(tǒng) + 穩(wěn)定性。 參考:《大連理工大學(xué)》2012年碩士論文
【摘要】:高速重載齒輪需要承受較高的載荷,運(yùn)行速度高,工況復(fù)雜,而且齒輪系統(tǒng)中時(shí)變嚙合剛度、傳遞誤差、齒側(cè)間隙等非線性因素影響,齒輪傳動(dòng)中出現(xiàn)復(fù)雜的非線性動(dòng)力學(xué)現(xiàn)象,如混沌和分岔等。高速重載齒輪的傳動(dòng)穩(wěn)定性是一個(gè)重要的問(wèn)題,研究參數(shù)對(duì)穩(wěn)定性的影響機(jī)制具有較大的理論價(jià)值和實(shí)際意義。 本文以高速動(dòng)車牽引齒輪傳動(dòng)系統(tǒng)為研究對(duì)象,研究高速重載齒輪傳動(dòng)系統(tǒng)的穩(wěn)定性問(wèn)題。主要工作如下: (1)研究齒輪傳動(dòng)系統(tǒng)的建模方法,根據(jù)高速動(dòng)車牽引齒輪傳動(dòng)系統(tǒng)的特點(diǎn),建立了斜齒輪彎-扭-軸非線性動(dòng)力學(xué)模型。綜合考慮了影響系統(tǒng)穩(wěn)定性的非線性因素,主要有時(shí)變嚙合剛度、傳遞誤差和齒側(cè)間隙等,建立系統(tǒng)微分方程并進(jìn)行無(wú)量綱化,為高速重載齒輪傳動(dòng)系統(tǒng)穩(wěn)定性研究提供基礎(chǔ)。 (2)研究齒輪系統(tǒng)參數(shù)對(duì)動(dòng)力穩(wěn)定性的影響。研究系統(tǒng)的固有特性,求解無(wú)阻尼線性自由振動(dòng)系統(tǒng)的固有頻率,分析重合度、支承剛度、嚙合阻尼和齒側(cè)間隙對(duì)系統(tǒng)動(dòng)態(tài)傳遞誤差的影響,分析其影響機(jī)制和規(guī)律,確定穩(wěn)定區(qū)和失穩(wěn)區(qū),并與系統(tǒng)固有頻率做比較,研究其內(nèi)在的關(guān)聯(lián)關(guān)系。 (3)研究高速重載齒輪系統(tǒng)的混沌和分岔現(xiàn)象。重點(diǎn)研究混沌和分岔出現(xiàn)時(shí)系統(tǒng)的參數(shù)特點(diǎn),用定性和定量的方法對(duì)混沌和分岔現(xiàn)象進(jìn)行識(shí)別,分析其定性特征和定量特征。并分析激勵(lì)頻率、嚙合阻尼和齒側(cè)間隙引起系統(tǒng)混沌和分岔的機(jī)理和途徑。 (4)基于動(dòng)力學(xué)穩(wěn)定性對(duì)系統(tǒng)進(jìn)行參數(shù)的匹配。依據(jù)參數(shù)對(duì)系統(tǒng)穩(wěn)定性的影響及混沌和分岔產(chǎn)生的條件,匹配參數(shù)并進(jìn)行方案評(píng)價(jià),選擇其中較優(yōu)的三組參數(shù)進(jìn)行動(dòng)力學(xué)穩(wěn)定性校驗(yàn),并從中得到最佳設(shè)計(jì)方案。
[Abstract]:High speed and heavy load gears need to bear high load, running speed is high, the working condition is complex, and the nonlinear factors such as time-varying meshing stiffness, transmission error, tooth side clearance and so on are affected in gear system. There are complex nonlinear dynamics phenomena in gear transmission, such as chaos and bifurcation. The transmission stability of high speed and heavy duty gears is an important problem. It is of great theoretical value and practical significance to study the influence mechanism of parameters on stability. In this paper, the stability of high speed and heavy load gear transmission system is studied with the traction gear transmission system of high speed motor car as the research object. The main tasks are as follows: 1) the modeling method of gear transmission system is studied. According to the characteristics of traction gear transmission system of high-speed train, the nonlinear dynamic model of helical gear bending torsion axis is established. The nonlinear factors affecting the stability of the system are considered synthetically, such as time-varying meshing stiffness, transmission error and tooth side clearance. The differential equation of the system is established and dimensionless, which provides the basis for the study of the stability of high-speed and heavy-duty gear transmission system. The influence of gear system parameters on dynamic stability is studied. The inherent characteristics of the system are studied, the natural frequency of the undamped linear free vibration system is solved, the influence of coincidence degree, supporting stiffness, meshing damping and tooth side clearance on the dynamic transfer error of the system is analyzed, and the influence mechanism and law are analyzed. The stable and unstable regions are determined and compared with the natural frequencies of the system. The chaos and bifurcation of high speed and heavy load gear system are studied. The characteristics of the system parameters when chaos and bifurcation occur are studied emphatically. The qualitative and quantitative characteristics of chaos and bifurcation are analyzed by qualitative and quantitative methods. The mechanism and approach of chaos and bifurcation caused by excitation frequency meshing damping and tooth clearance are analyzed. 4) matching the parameters of the system based on the dynamic stability. According to the influence of parameters on the stability of the system and the conditions of chaos and bifurcation, the parameters are matched and evaluated, and three groups of parameters are selected to check the dynamic stability, from which the optimal design scheme is obtained.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TH132.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 袁衛(wèi)華;;推土機(jī)終傳動(dòng)齒輪的模態(tài)分析[J];工程機(jī)械;2008年06期
2 張鎖懷,沈允文,董海軍,劉夢(mèng)軍;齒輪時(shí)變系統(tǒng)對(duì)扭矩激勵(lì)的響應(yīng)[J];航空動(dòng)力學(xué)報(bào);2003年06期
3 高建平,方宗德,楊宏斌;具有時(shí)變剛度傳動(dòng)誤差及間隙的齒輪系統(tǒng)動(dòng)力學(xué)分析[J];航空學(xué)報(bào);1999年05期
4 唐進(jìn)元;;齒輪傳遞誤差計(jì)算新模型[J];機(jī)械傳動(dòng);2008年06期
5 孫智民,季林紅,沈允文,常輝蘭;齒側(cè)間隙對(duì)星型齒輪傳動(dòng)扭振特性的影響研究[J];機(jī)械設(shè)計(jì);2003年02期
6 鄭光澤,李潤(rùn)方,林騰蛟;高速重載齒輪傳動(dòng)系統(tǒng)動(dòng)態(tài)響應(yīng)優(yōu)化設(shè)計(jì)[J];機(jī)械設(shè)計(jì);2005年06期
7 張鎖懷,李憶平,丘大謀;用諧波平衡法分析齒輪耦合的轉(zhuǎn)子—軸承系統(tǒng)的動(dòng)力特性[J];機(jī)械工程學(xué)報(bào);2000年07期
8 孫智民,沈允文,王三民,李華;星形齒輪傳動(dòng)系統(tǒng)分岔與混沌的研究[J];機(jī)械工程學(xué)報(bào);2001年12期
9 孫濤,沈允文,孫智民,劉繼巖;行星齒輪傳動(dòng)非線性動(dòng)力學(xué)方程求解與動(dòng)態(tài)特性分析[J];機(jī)械工程學(xué)報(bào);2002年03期
10 李 華,沈允文,孫智民,徐國(guó)華;基于A-算符方法的齒輪系統(tǒng)的分岔與混沌[J];機(jī)械工程學(xué)報(bào);2002年06期
相關(guān)會(huì)議論文 前1條
1 孫濤;沈允文;;間隙作用下齒輪系統(tǒng)的非線性動(dòng)力學(xué)與混沌[A];制造業(yè)與未來(lái)中國(guó)——2002年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2002年
相關(guān)博士學(xué)位論文 前4條
1 胡清華;軸承—轉(zhuǎn)子系統(tǒng)的非線性動(dòng)力學(xué)分析與優(yōu)化研究[D];大連理工大學(xué);2011年
2 符文彬;非線性動(dòng)力系統(tǒng)的分岔控制研究[D];湖南大學(xué);2004年
3 楊成云;齒輪傳動(dòng)系統(tǒng)耦合振動(dòng)響應(yīng)及抗沖擊性能研究[D];重慶大學(xué);2006年
4 成玫;轉(zhuǎn)子—軸承—密封系統(tǒng)動(dòng)力學(xué)特性研究[D];上海交通大學(xué);2009年
相關(guān)碩士學(xué)位論文 前8條
1 郭磊;斜齒輪多間隙非線性耦合系統(tǒng)動(dòng)力學(xué)研究[D];大連理工大學(xué);2010年
2 謝雯;非線性動(dòng)力系統(tǒng)的分岔與控制[D];南京航空航天大學(xué);2010年
3 劉夢(mèng)軍;單對(duì)齒輪系統(tǒng)間隙非線性動(dòng)力學(xué)研究[D];西北工業(yè)大學(xué);2002年
4 陳建國(guó);離散混沌保密通信系統(tǒng)的設(shè)計(jì)與研究[D];哈爾濱工程大學(xué);2005年
5 于晉臣;非線性動(dòng)力系統(tǒng)的分岔研究[D];北京交通大學(xué);2007年
6 徐克生;斜拉橋拉索非線性振動(dòng)的數(shù)值研究[D];大連理工大學(xué);2007年
7 龍蓓;鋼筋混凝土梁非線性振動(dòng)研究[D];湖南大學(xué);2008年
8 李飛敏;轉(zhuǎn)子—滾動(dòng)軸承耦合系統(tǒng)碰摩故障動(dòng)力學(xué)分析與智能診斷[D];南京航空航天大學(xué);2008年
,本文編號(hào):1901518
本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/1901518.html